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The study aims to develop a comprehensive qualification model for navigators in automated ship control,
evaluating technical, cognitive, and behavioral competence to enhance real-time decision-making in variable
navigational environments.

The main challenge is integrating advanced technologies like artificial intelligence and fuzzy logic to
accurately monitor risks arising from human factors.

The methodology involves creating a model that assesses navigator competencies by integrating various
aspects. Data from ECDIS and other sensors are processed into a feature vector. The Mamdani algorithm
aggregates fuzzy rules defining qualification parameters, while neural networks model complex
interrelationships. The model uses fuzzy membership functions to assess risks considering speed, under-keel
depth, weather conditions, and collision probability.

Results show the model detects potential risks timely and automates decision-making, reducing navigator
workload in challenging conditions. It effectively predicts ship trajectory, identifies risky zones, and provides
safety recommendations.

Practically, it enhances maritime safety through personalized navigator assessment. Integration with existing
systems like ECDIS offers flexibility without major infrastructural changes. The system individualizes
recommendations, reducing accident risk and improving training efficiency. Future research includes
expanding the training database, refining algorithms, and studying the impact of the navigator's
psychophysiological state on ship management effectiveness.
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Introduction. With global maritime traffic increasing by over 60% and navigational
situations becoming more complex, modern shipping faces challenges that demand high navigator
preparedness and rapid adaptation. Key issues include managing ships during complex maneuvers —
such as navigating narrow straits, limited visibility, high traffic density, and changing weather
conditions. Despite advanced decision support and navigational information systems, much
responsibility relies on the navigator's qualifications, decision-making abilities, and quick analysis
of surrounding factors.

Existing systems like ECDIS, AIS, GPS, and autopilots provide extensive data but often
neglect the navigator's cognitive and behavioral aspects, which are crucial in complex situations.
Overreliance on automated decision support can lead to excessive dependence, insufficient
situational awareness, and potential loss of control during critical moments, especially in difficult
sailing conditions. This problem is particularly acute concerning possible collisions, limited under-
keel depth, and risks from heavy traffic in high-danger zones.

Traditional decision support systems may not fully account for rapid external changes — like
sudden weather shifts or other vessels' course changes —and often emphasize theoretical knowledge
over behavioral model development. The absence of a comprehensive navigator model that includes
both technical and cognitive aspects poses significant risks to maritime safety and complicates
automated control under increased workloads.

Therefore, developing a navigator qualification model for automated ship control tasks is
urgently needed to provide objective assessments and enhance the efficiency and reliability of
automated ship control systems in complex navigational conditions.
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Problem Statement. An analysis of scientific sources shows various approaches to
automation and risk assessment in maritime navigation, with a particular emphasis on the use of
fuzzy logic, neural networks, and artificial intelligence.

In article [1], an adaptive neuro-fuzzy inference system (ANFIS) is proposed for a ship's
autopilot in unstable environments. Advantages include adaptability to external conditions and the
ability to model complex maneuvers thanks to six degrees of freedom. However, the complexity of
the system and dependence on precise parameter tuning may limit its application for assessing the
navigator's qualification. Work [2] presents a method of multisensor data fusion for detecting
moving objects using fuzzy logic. This increases the reliability of target detection, which is useful
for the navigator's situational awareness. However, the focus on automatic determination of object
positions without considering the human factor limits its application for qualification assessment. In
article [3], a risk assessment model is proposed for marine aquaculture platforms, using AlS data to
analyze shipping traffic. The model considers numerous environmental factors but is more oriented
towards objective data and less towards the behavioral aspects of the navigator. Study [4] examines
the implementation of fuzzy logic controllers in automatic navigation using loT and genetic
algorithms. Although aimed at automotive navigation, the principles can be adapted for the marine
environment. However, the lack of emphasis on behavioral indicators and the specificity of the
marine environment require additional adaptation. Article [5] presents a method of risk assessment
using 3,4-quasi-level fuzzy sets and a multicriteria decision-making system. The approach
demonstrates flexibility and improved accuracy in risk determination, which is valuable for
assessing the navigator's qualification in complex conditions. However, the complexity of
customization for the maritime environment and limitations in assessing behavioral characteristics
can be obstacles. Article [6] proposes a model that uses AIS data and global optimization
algorithms to mitigate conflicts between ships. Advantages include integration of situational
awareness and assessment of high-risk zones. However, the lack of attention to behavioral
characteristics of the navigator and real-time limitations may reduce the practicality of the method
for qualification assessment. In study [7], the perception of navigators towards the collision
avoidance decision support system (AIM) is analyzed. The system enhances situational awareness
and promotes compliance with COLREGs rules. However, dependence on automatic
recommendations and a limited role of traditional skills may limit its effectiveness in the context of
qualification assessment.

Article [8] explores modern visual navigation systems for "smart" ships, focusing on the
integration of data from various sensors and intelligent algorithms. This promotes increased
navigation safety and can be integrated into qualification models for developing environmental
analysis skills. However, dependence on technologies and high resource requirements can become
obstacles. In work [9], a hybrid model is proposed for assessing navigation risks of autonomous
ships by combining STPA and hidden Markov models. This allows identifying risk factors in
dynamic conditions. However, the complexity of integrating behavioral aspects and dependence on
data accuracy limit its application for qualification assessment. Article [10] explores the impact of
augmented reality (AR) on navigator performance. The use of AR enhances situational awareness
and can be useful for assessing the ability to effectively manage navigation. However, potential
cognitive overload and lack of standardization require further research. In article [11], possibilities
for standardizing ECDIS through the implementation of S-Mode are analyzed, aimed at reducing
human errors by unifying the interface. This can help in assessing adaptability and competence of
the navigator in using standardized systems. However, challenges related to the need for specific
training and problems adapting to older models are present. Work [12] presents the RA4AMAIS
method for identifying risks of integrated Al-based systems for remotely controlled ships. The
method considers internal failures, human errors, and environmental conditions. However, limited
practical testing and the complexity of integration with traditional risk analysis methods may be
obstacles.

In [13], a methodology for merging AIS and radar data is investigated to enhance situational
awareness on inland waterways. This improves the accuracy of navigational data and helps in
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detecting potential hazards. However, the complexity of algorithms and sensitivity to data quality
may complicate practical application. Article [14] examines the interaction of watch officers with
the ECDIS system and the impact of interface variability from different manufacturers on
navigation safety. Standardization of the interface can reduce the number of human errors, but the
lack of a unified standard and complexity in real-world use limit the effectiveness of the approach.
Study [15] proposes a model for enhancing navigation safety by analyzing errors in the use of AlS.
Emphasis on additional training and standardization of educational programs contributes to
improving technical awareness of navigators. However, the narrow focus on AlS errors and lack of
attention to cybersecurity reduce the comprehensiveness of the approach. In article [16], a method
for predicting navigational behavior of ships based on AIS data using the Attention-LSTM neural
network is proposed. This achieves high prediction accuracy, which can improve maritime traffic
monitoring. However, high resource requirements and dependence on data quality are limitations.

Article [17] describes a method based on computer vision for assessing the risk of collision
between ships, using the YOLOv7 model and the StrongSORT algorithm. Advantages include high
accuracy in object detection and tracking, allowing assessment of the navigator's skills in hazard
detection. Disadvantages include sensitivity to weather conditions and dependence on camera
stability. Articles [18-21] explore the adaptive capabilities of Learning Management Systems
(LMS) and their application for improving navigator training. The use of early success prediction
models and a systematic approach to LMS implementation can increase learning efficiency.
However, the complexity of managing large data volumes and lack of standardization may limit
effectiveness. In work [22], a dynamic ship domain model is proposed that takes into account
traffic, speed, and the navigator's state. This allows assessing the navigator's adaptability to external
conditions. However, computational complexity and dependence on data quality limit practical
application.

Articles [23-25] are devoted to improving OCR technologies for processing textual data,
which can be useful for automating the processing of navigational documents. However,
dependence on image quality and high resource requirements may limit application in the maritime
environment.

In article [26], the use of mixed reality for improving maritime navigation is investigated,
especially under conditions of remote piloting. Advantages include increased situational awareness,
but high hardware requirements and possible visual overload are disadvantages. Article [27]
analyzes the implementation of competency-based education in the training of maritime specialists.
This promotes increased qualification and navigation safety but requires overcoming financial and
organizational barriers.

Overall, the analyzed sources demonstrate a wide range of modern technologies and
methods that can be integrated to develop effective models for assessing the navigator's
qualification, considering technical and behavioral aspects.

Research Purpose and Objectives. The purpose of the study is the development of a
qualification model of the navigator for automated ship control, which will provide a
comprehensive assessment of his professional competencies, including technical, cognitive, and
behavioral aspects. The model should enhance the efficiency of decision-making in real-time,
taking into account changing environmental conditions and the specific skills of the navigator for
safe navigation.

Research tasks. The research aims to develop a comprehensive qualification model for
navigators by:

Reviewing modern qualification assessment approaches to identify methods using fuzzy
logic, neural networks, and artificial intelligence that integrate technical and behavioral aspects.

Formulating model components for systematic assessment, considering input data, hazard
level evaluation, qualification parameters, and the navigator's intuitive and cognitive features.

Developing a hazard level assessment module utilizing fuzzy logic for multicriteria
navigational risk evaluation, adaptable to external factors and changing conditions.
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Creating algorithms to identify navigator qualification parameters based on training, test
results, and real navigational scenarios to determine competencies critical for safe navigation.

Developing a cognitive module to analyze navigators' intuitive actions in critical situations,
accounting for human factors and assessing risks associated with intuitive decision-making.

Creating modules for ship trajectory prediction and decision-making to analyze trajectories,
identify potentially dangerous zones, and provide recommendations to enhance navigation safety.

Ensuring integration with existing navigation systems, particularly ECDIS and AIS, for
accurate real-time data processing and timely assessment of the navigator's qualification level and
safety.

Primary Research Material. The development of a Navigator Qualification Model (NQM)
is based on four key principles:

Comprehensive Assessment: Consider both technical and human factors in evaluating
navigational situations.

Adaptability: Adjust to changing navigation conditions and individual navigator
characteristics.

Safety Enhancement: Improve safety through risk prediction and providing
recommendations.

Real-Time Support: Utilize modern technologies to aid decision-making in real time.

The NQM is structured into six main modules:

1. Input Data and Navigation Parameters

1.1 Data Collection: Gather navigational data (speed, course, position), information from
ECDIS and AIS systems, and training results; synchronize and aggregate this data.

1.2 Data Processing: Normalize and filter data to remove noise and outliers.

1.3 Feature Extraction: Extract relevant features to form the system's state vector.

2. Hazard Level Assessment Module

2.1 Fuzzy Logic Risk Assessment: Use membership functions and expert-based fuzzy rules
to evaluate risks, resulting in a numerical risk value.

2.2 Mathematical Risk Model: Calculate risk levels using normalized parameters and weight
coefficients to model the impact of individual factors.

3. Navigator Qualification Parameters Module

3.1 Qualification Identification: Collect data on test results, training activities, and simulator
performance; normalize and filter to create feature vectors.

3.2 Competency Modeling: Define competencies and levels using fuzzy logic; apply neural
networks to model complex relationships.

3.3 Model Training: Train neural networks with historical data; optimize weights and
validate the model.

3.4 Gap Analysis: Identify competencies below threshold levels; develop improvement plans
and update the model with new data.

4. Cognitive Module of Intuitive Actions

4.1 Criteria Generalization: Consolidate intuitive actions into main categories (e.g.,
perception, decision-making) for simplified analysis.

4.2 Impact Modeling: Define criteria for each category; assess their impact on safety and
model them as variables affecting risk levels.

5. Navigational Data and Geolocation Processing Module

5.1 Automated Processing: Capture ECDIS screenshots; preprocess images; use OCR for
text recognition.

5.2 Data Analysis: Structure textual data; calculate distances between coordinates; detect
deviations from planned routes.

5.3 Visualization: Create interactive maps displaying routes and risk zones to enhance
situational awareness.

5.4 System Integration: Transfer processed data to other modules for comprehensive
analysis and recommendation generation.
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6. Forecasting and Decision-Making Module

6.1 Trajectory Prediction: Use machine learning algorithms to predict future ship positions;
adapt models to specific ship conditions.

6.2 Risk Detection: Analyze predicted trajectories for potential hazards; consider
uncertainties and human factors.

6.3 Decision Support Integration: Incorporate forecasting results into decision support
systems; generate recommendations based on data analysis.

6.4 Recommendation Delivery: Provide timely advice to optimize decisions; display
recommendations on interfaces and interactive maps.

An important condition in the development of the NQM is considering the interaction
between its components. The development of the NQM involves creating the following connections
(Figure 1):

© InputDataModule

o data: Dataf] J’
o navigationParameters: NavigationParameters © CognitiveModule

o collectData(): void

o normalizeData(): void o intuitiveActions; Action[] I
e formStateVector(): Vector o generalizeCriteria(): void [
o categorizeActions(): void
o evaluatelmpact(): void |
uses data
analyzes data
©DangerAssessmentModule

| o risk: Risk ©NavigationDalaModule
o assessDangerLevel(): void

e fuzzyAssessment(): void HIMages. I_mage[] .
o calculateRisk(): double (mtoxibata; TextOaal]
@ processimages(): void
e recognizeText(): void
depends on o visualizeGeoData(); void
© QualificaticnModule Jp'uvides data for decisions
o qualification: QualificationParameters
o identifyParameters(), void @ DecisionMakingModule
o trainNeuralNetwork(): void z
o adjustParameters(): void ol trajectory: Path
e modelTrajectory(): void
o assessRisks(): void
passes paramelers e generateRecommendations(): void

Figure 1 — Scheme of interaction between components of the navigator's qualification model

Input data provide information for all modules, supporting the relevance and accuracy of the
analysis.

The hazard level assessment module uses data from navigational parameters and the
navigator's qualification to calculate risks.

The module for identifying qualification parameters influences risk assessment, considering
the navigator's level of competencies.

The cognitive module of intuitive actions takes into account the human factor and can adjust
forecasting and recommendations.

The navigational data processing module provides current and accurate data for the
forecasting and decision-making modules.
The forecasting and decision-making module integrates information from all modules for
comprehensive analysis and navigator support.

Let us consider each module of the NQM model in detail.

2. Description of NQM Input Data and Navigation Parameters (Figure 2).

2.1. Data Collection.

Navigational parameters: (Ship speed S(t); Ship course 6(t); Ship position (x(t), y(t));
Proximity to other ships P(t); Technical condition of the ship Ts(t); Weather conditions W(t); Time
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of day C(t); Under-keel clearance H(t); Current Veurrent(t); Wind Vwina(t); Visibility Vis(t); Traffic
intensity D(t); Hazardous zones Zdanger(X,y); Ship draft Daraft; Ship maneuvering characteristics M(t).

Data from ECDIS and AIS Systems (Detailed electronic navigation charts; Data about other
ships: position, course, speed, type) [28].

Data from LMS Moodle (Test results Rest; Navigator's activity ALwms; Learning history
Hlearning).

Data from Simulators and VR Systems (Navigator's reactions in various scenarios Rsim(t);
Reaction time Treaction(t); Maneuvering accuracy AcCCmaneuver(t)).

2.2. Data Preprocessing and Integration into the Model.

A description of how collected data from various sources are preprocessed and integrated
into the navigator's qualification model for real navigational situations.

2.2.1. Data Synchronization and Aggregation.

Time Synchronization: Since data arrive from different sources with various timestamps and
update frequencies, it is necessary to synchronize them to a common time step At. A common time
scale is established ti,t,...,tr, where T is the number of time intervals.

Interpolation and Discretization: Data with a higher frequency are aggregated to At by
averaging. Data with a lower frequency are interpolated to obtain values at each t.

Data Aggregation: All parameters for each time moment tk are combined into a single state
vector X(tx).

2.2.2. Normalization and Scaling of Parameters.

To ensure the correctness and stability of the model operation, all parameters are normalized
to the range [0,1] or standardized (Z-score normalization).

X=X X— M,

Min-Max Normalization: X.,, =—"—, Z-Score Normalization: Xy, = :
o

max — Xmin X

where ux is the mean value of parameter xxx, and x, ox is the standard deviation.

Application of Normalization: Navigational parameters S(t), 6(t), P(t), Ts(t), W(t), H(t),
Veurrent(t), Vwind(t), Vis(t), D(t) are normalized using the appropriate methods.

2.2.3. Data Processing and Filtering.

Noise Filtering: Low-pass filters or the Kalman filter are applied to smooth data and remove
noise.

Outlier Detection and Processing: Statistical methods are used to detect abnormal values
(e.g., quartile method). Outliers can be replaced with the median value or removed from the dataset.

2.2.4. Extraction of Relevant Features.

Based on the normalized and cleaned data, features are formed to be used in the model.

Navigational Features: Ship speed Snorm(t); Ship course: fnorm(t); Deviation from planned
course:  AG (t) = Grorm (t) = Opianned norm (T) ;- Proximity to other ships: Prom(t); Under-keel

clearance: Hnorm(t); Visibility: Visnorm(t).

Environmental Features — Weather conditions: parameters Wnorm(t) are split into separate
features (wind, waves, etc.). Current and wind Veurrent, norm(t), Vwind, norm(t).

Technical Features: Technical condition of the ship: Tsnorm(t); Maneuvering characteristics:
parameters Mnorm(t) may include turning radius, stopping distance, etc.

Qualification Features: est results: aggregated into a single indicator or vector Riest, norm;
Activity in LMS Moodle: Aciwms, norm; Data from simulators and VR systems: Rsim, norm(t),
Treaction, norm(t) ACCmaneuver, norm(t).

2.2.5. Formation of the System State Vector.

All extracted features are combined into a single state vector for each moment in time t:
X(t)=[Snorm(t), Qnorm(t), Pnorm(t), Hnorm(t), ViSnorm(t), Veurrent, norm(t), Vwind,norm(t), Ts,norm(t), Rsim, norm(t),
Treaction, norm(t), ACCmaneuver, norm(t), Rtest, norm, ALMS, norm,. . ]

2.2.6. Mathematical Formalization of the Model

The navigator's qualification model in a real situation can be represented as a function:
k()=f(x(t), ©*),
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where: k(t)€[0,1] - is the navigator's qualification assessment at time t.

X(t) - is the system state vector at time t.

®* are the model parameters requiring adjustment (weight coefficients, activation function
parameters, etc.).

Possible Forms of Function f:

Linear Regression: k(t) = wTx(t)+b, where w - is the weight coefficient vector, and b is the
bias.

Nonlinear Model (Neural Network): k(t) = a(w2T ¢(Wix(t)+b1)+b2),

where: W1, w2 - are the weight matrix and vector, respectively.

b1, b2 - are bias vectors.

#(+) - is the activation function of the hidden layer (e.g., ReLU).

a(-) - is the sigmoid function to limit the output in the range [0,1].

Fuzzy Logic Model: Fuzzy rules are used to model the relationships between features and
qualification. Defuzzification of results is performed to obtain a numerical value k(t).

2.2.7. Determination of Model Parameters.

Model Training: Historical data with known qualification assessments kiue(t) are used to

adjust parameters ®*.
2

. . 13
Minimization of Loss Function: L :?Z(k(t)—ktrue (1) .
t=1
Parameter Optimization: Performed using gradient descent methods or its variations.
Regularization: To prevent overfitting, regularization methods are used (L1, L2
regularization, Dropout in the case of neural networks).

© QualificationModel

‘ o qualificationScore: Float
o stateVector: List
o calculateQualification()
o realTimeEvaluation()
7
F
/
evaluates data from /
/

e data from
\l ecelves
X

© ShipNavigation

o speed: Float
o course: Float
o proximityToOtherShips: Float
o technicalCondition: Float
ECDISData o weatherConditions: Float :
© : : USes 5 timeOfDay: Float © DataPreprocessing
o electronicCharts: List | o depthUnderKeel: Float

o nearbyShipsData: List o current: ‘Eloat o syncAndAggregateData()

ik Pre-processes | o normalizeAndScaleParameters()
o getData() o wind: Float data for o filterAndProcessData()

o visibility: Float
o trafficintensity: Float o featureExtraction()

, o draft: Float
| mmaneuveringCharacteristics: Float |
uses = position: (Float, Float)
/ o updateParameters()
1 s el s siaed ==

@ LMSMocodle /

o testResults: Float v USES
o userActivity: Float

o learningHistory: String
o getResults() ©Simu|atorAndVRSystem

o navigatorReaction: Float
o reactionTime: Float
0 maneuverAccuracy: Float

o simulateScenario()

Figure 2 — Data Collection Module for the Navigator's Qualification Model

2.2.8. Model Validation and Testing.
Data Partitioning: Data are divided into training, validation, and test sets. Evaluation of
Model Quality Metrics. Mean Squared Error (MSE). Coefficient of Determination (R?).
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2.2.9. Real-Time Model Usage.

Real-Time Qualification Assessment: is calculated in real-time based on current parameter
values Kk(t), x(t).

Integration with Navigation Automation System: If k(t) falls below a certain threshold
Kthresholdk, the system can activate additional control or support mechanisms.

Consideration of Psychophysiological State: The parameter k(t) can be adjusted taking into
account the navigator's psychophysiological S(t), as described earlier.

3. Hazard Level Assessment Module (Figure 3).

3.1. Fuzzy Logic and Multicriteria Risk Assessment.

3.1.1. Membership Functions for Each Parameter.

For the parameter xi, Gaussian, triangular membership functions, and others are used:

(xg )2

Gaussian Function: 4 (x)=e @

where ci — is the mean value, ai — is the standard deviation.

Triangular membership functions and others can also be applied.

3.1.2. Fuzzy Rules (Knowledge Base Rules).

"If—then" type rules that take into account maritime transportation experience:

Rule 1: If S(t) is high, and P(t) is low, and Vis(t) is poor, then the risk is critical.

Rule 2: If H(t) — Daratt is small (under-keel clearance is low) and Vcurrent(t) is strong current,
then the risk is high.

3.1.3. Aggregation and Defuzzification.

Aggregation: Performed using T-norm (minimum) or S-norm (maximum)

Defuzzification using the Center of Gravity Method

IyR(r)dr

3.2. Mathematical Risk Model Using Analytical Functions.
We describe the risk as a function:

R(t)= Z:zlvg_”fiv(v_)(i (1)) .

where: wi — are weighting coefficients determined by experts.
fi(xi(t)) — are normalized risk functions for each parameter.
Example of a Risk Function for Under-Keel Clearance:

1, H (t)_ Ddraft < Hmin
H (t) = Dy — Hin
fH (H (t)) = ( 2| ifalf_t' - ' Hmin <H (t)_ Ddraft < Hsafe
safe min
0, H (t)_ Ddraft > Hsafe

4. Module for Identifying the Navigator's Qualification Parameters

4.1. Algorithm for Identifying Qualification Parameters

4.1.1. Problem Statement

The goal of this module is to develop a mathematical model and algorithm for the automated
identification of the navigator's qualification parameters based on the training program for
specialization 271.01 "Navigation and Control of Marine Vessels." The model should consider all
aspects of professional competence provided by the program and utilize various data sources to
assess the navigator's level of preparation.

4.1.2. Data Collection and Preliminary Processing
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Data Sources:

a) Learning Management System (LMS Moodle): Test Results: Rtest = {r1,rz,...,rn}, where:
ri € [0,100] — is the percentage result of the j-th test. Navigator's Activity: ALvs={a1,az,...,am},
where: ai — are activity indicators in LMS (number of logins, time spent on the platform, completed
tasks, etc.). Learning History: Hieaming— records of completed courses, obtained certificates, etc.

©RiskAssessmenlModule

o evalualeRisk() &
P
_/’usas preprocesses data with “jntegrates with
/1// 1 \
@ Fuzzylogic . :©DataPrepr0cessing © RiskModel
o applyMembershipFunction(parameter: String, value: Float): Float o filterMNoise() . o weights: List<Float>
S ) | Lo clcuaeRIsk): Flon
A N
//llses \{.pliﬂs rules from
o N
@ MembershipFunction © FuzzyRules

o gaussian(x: Float, c: Float, sigma: Float): Float
e triangular{x: Float, a: Float, b: Float, c: Float): Float
e trapezoidal(x: Floal, a: Float, b: Float, c; Float, d: Float): Float

o addRule(condition: String, result: String)
o evaluateRules()

Figure 3 — Scheme of the Hazard Level Assessment Module

b) Tpenaxepu Tta VR-cucremu: Navigator's Reactions in Simulated Situations:
Rsim={S1,52,...,Sk}, where: sk — is a set of indicators for the k-th simulated situation.

Reaction Time: Treaction = {t1,t2,...,t}, where: tk is the reaction time to the k-th situation.

Maneuvering: AcCmaneuver = {acci, accz, ..., acck}, where: acck € [0,1] — is the accuracy of
executing the k-th maneuver.

c) Data from Real Navigational Operations: Actions During Watch: Dactions = {d1,dz2,...,di},
where: di is a set of actions performed during the I-th watch.

Deviation from Planned Route: Aroute = {01,02,...,01}, where: i is the deviation from the route
during the I-th watch.

Decisions Made in Critical Situations: Ddecisions={dec1,decz,...,decp}, where: decp is the
quality assessment of the decision in the p-th critical situation.

Preliminary Data Processing. Normalization: Bringing data to a common scale [0,1] to
ensure correctness in subsequent calculations.

X=X .

m

Normalized indicator: X, =—""—, where: X is the original value; Xmin, Xmax — are the
X

max min

minimum and maximum values of the indicator.

Filtering: Removal of noise and anomalous values using the Kalman filter or other methods.

Feature Extraction: Forming a feature vector X for each navigator: X = [x1,x2,...,Xxn] — is the
total number of features obtained from all data sources.

4.1.3. Mathematical Model of Qualification Parameters

Definition of Qualification Parameters. Let there be a set of qualification parameters
K = {kikz,....km}, where: ki € [0,1] is the level of proficiency in the i-th competence. M is the
number of competencies defined based on the training program.

Sets of Qualification Parameters: ki: Knowledge of International Regulations for Preventing
Collisions at Sea (COLREG); k2: Skills in maneuvering under complex conditions; ks: Ability to
make decisions in critical situations; ks: Technical proficiency in using navigation equipment; ks:
Level of fatigue and psychophysiological state.

Formation of Membership Functions.

For each qualification parameter ki membership functions wi(x), are defined, reflecting the
navigator's degree of proficiency in the corresponding competence.
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Building a Fuzzy Rule Base. HeuiTki npaBuia MaioTh BUr Fuzzy rules have the form: If xa
belongs to A1 and x2 belongs to Az then ki belongs to Ki, where: x1, X2 are features from vector X; A1,
Az are linguistic terms (e.g., "high,” "medium,” "low"); Ki is the linguistic assessment of
competence ki.

Mathematical Model of Identification. Aggregation of Rules: The Mamdani method is used
for rule aggregation. The activation degree of each rule is calculated as the minimum of the
membership degrees of the input features.

4.1.4. Data Processing and Qualification Parameter Assessment

Formation of Feature Vector X. The feature vector X consists of normalized values of
indicators affecting the qualification parameters: X = [x1, X2, ..., Xn], Ae: Xn € [0,1] is a normalized
indicator.

Use of Neural Networks. To model complex nonlinear relationships between features and
qualification parameters, a multilayer perceptron (MLP) neural network is used.

Network Architecture: Input Layer: N neurons (number of features).

Hidden Layers: One or more layers with nonlinear activation functions (ReLU, sigmoid, tanh).

Output Layer: M neurons (number of qualification parameters).

nj*n

N
Output of a Hidden Neuron: h; = f,... (Zw X +bjj,
n=1

where: hj is the output of the j-th hidden neuron.

Whj is the weight coefficient between the n-th input neuron and the j-th hidden neuron
bj is the bias of the j-th hidden neuron

fhigden(-) IS the activation function of the hidden layer.

Output of the Output Neuron (Qualification Parameter):

H
ki = foutput [ijihj + bl] !

j=1
where: H is the number of neurons in the hidden layer.
wii is the weight coefficient between the j-th hidden neuron and the i-th output neuron.
bi is the bias of the i-th output neuron.
foutput(+) is the activation function of the output layer (e.g., sigmoid).
4.1.5. Neural Network Training
Loss Function. The Mean Squared Error (MSE) function is used:

_iM red rue2
L_M;(kip k™),

where: k"™ is the predicted value of qualification parameter ki,

k™ is the actual (reference) value of qualification parameter ki.

Optimization of Weight Coefficients. The backpropagation algorithm is used. Optimizers
include SGD (Stochastic Gradient Descent), Adam, RMSProp.

Hyperparameters: Learning rate n\etan, batch size, number of epochs.

Validation and Testing. Data are divided into training, validation, and test sets. Quality
metrics are evaluated: MSE, MAE (Mean Absolute Error), coefficient of determination R2.

4.1.6. Identification and Correction of Qualification Gaps

Detection of Critical Parameters. A threshold value K™ is set for each qualification

parameter. If k. < k™" then competence ki requires improvement,

Forming a Knowledge Recovery Plan. Determining educational materials and training to
increase the level of ki. Monitoring progress after training.
4.1.7. Impact of Qualification Parameters on Risk Level
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Zi’\ilvi ki
v
i=1 i
where: vi is the weighting coefficient of the importance of competence ki.
Q € [0,1] is the integral qualification indicator of the navigator.
Risk Level Adjustment. The risk level R is adjusted considering the navigator's qualification:
Radjusted = R-(1+a(1—-Q)),
where: R is the base risk level determined based on navigational parameters.
a > 0 1s the coefficient of the qualification's impact on risk.
4.1.8. Considering Psychophysiological State
Psychophysiological State Model.
Psychophysiological state coefficient S € [0,1]: S = e#F,
where: F > 0 is the level of fatigue or stress,
S =0 is the coefficient of fatigue's impact on the state.

Adjustment of Qualification Paramete. Effective qualification parameter: kiEff = ki .S

Impact on Risk Level. Final risk level: Rfinal = Radjusted-(1+y(1-S),
where: y > 0 is the coefficient of the psychophysiological state's impact on risk.

Calculation of Integral Qualification Indicator: Q =

4.1.9. Dynamics of Qualification Parameter Changes
Learning and Forgetting Model: % = 1V, (t)— 2k (1),

where: % is the rate of change of qualification parameter ki, 4i > 0 is the learning

coefficient.
Ui(t) > 0 is the intensity of learning at time t, i > 0 is the forgetting coefficient.

With constant Ui(t) = Ui: k, (t):(ki (o)_“iTUije%t +_”i;i :
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e calculate RiskAdjustment{Q: Floal, 8: Float): Float
& generatelmpravementPlan()

garhers dota from gererales improvement recommendotions
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o processRawData(): List<Float=
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o extractFeatures(): List<Floal=
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Figure 4 — Scheme of the Module for Identifying the Navigator's Qualification Parameters

Thus, the extended mathematical model for identifying navigator qualification parameters
integrates elements of fuzzy logic and neural networks. It considers multiple data sources—
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including test results, training, and real navigational actions—and models nonlinear relationships
between indicators and competencies using neural networks. Fuzzy inference rules address
uncertainty and subjectivity in assessments. The model accounts for the dynamics of qualification
changes over time, considering learning and forgetting processes, and includes the impact of the
navigator's psychophysiological state on effective qualification and risk levels. Additionally, it
allows for adjusting the risk level based on the integral qualification indicator and the navigator's
current state.

5. Module for Identifying Intuitive Actions of Operator-Navigators in Critical Situations

In critical navigational situations, operator-navigators may rely on intuitive actions that,
while sometimes beneficial, can lead to errors and increased navigational risk. To effectively
manage these risks, it is necessary to develop a model that identifies and analyzes navigators'
intuitive actions by generalizing various criteria and combining them into more general categories
[29].

5.1. Module Objective

Develop a generalized model for identifying intuitive actions of operator-navigators in
critical situations.

Generalize and combine criteria of intuitive actions into general categories to simplify
analysis.

Enable real-time identification of intuitive actions to manage navigational risks.

5.2. Generalization of Criteria and Combination into Categories

Define 15 initial categories of intuitive actions and combine them into five main categories.
Each category includes relevant criteria, manifestations, and factors.

1: Perception and Assessment of the Situation.

Description: Intuitive perception and assessment of the navigational situation without
detailed analysis. Quick awareness of changes, sometimes without proper consideration of all
factors.

Combined Initial Categories: Category 1: Perception and assessment of the situation.
Category 11: Time reflection. Category 14: Influence of event experience.

Criteria: Making decisions too quickly without detailed analysis. Spontaneous determination
of time frames for action execution. Subconscious use of past experience in current new decisions.

Factors: Zaint — intuitive perception of the situation; Timeint — intuitive time reflection;
Echoint — intuitive "echo” of events.

2: Decision-Making and Action Selection.

Description: Intuitive decision-making in critical situations. Choosing actions based on a
"feeling" of correctness without objective justifications.

Combined Initial Categories: Category 2: Dynamics of intuition and action selection.
Category 6: Decision-making in critical situations. Category 7: Search for rewards and effects.
Category 8: Serendipity and intuition.

Criteria: Sudden feeling of the "correctness” of actions. Quick decisions without prolonged
analysis. Intuitive determination of the safest actions. Sudden discovery of solutions without an
obvious reason.

Factors: zint — intuitive choice; Evint — intuitive response to events; Rewardsint, Effectsint —
intuitive perception of rewards and consequences; ldeaint — intuitive formation of ideas.

3: Cognitive Processes and Information Processing.

Description: Intuitive understanding of complex information and associative connections.
Subconscious processing of navigational data and images.

Combined Initial Categories: Category 3: Cognitive processes. Category 12: Complex
images and events. Category 5: Complex behavior model.

Criteria: Instant understanding of complex information. Intuitive perception of images and
navigational schemes. Multitasking without conscious focus.

Factors: Cogint(Pa,Pb) — intuitive understanding of action sequences; ImageSchemasint —
intuitive perception of images; LA0Tint — intuitive actions with tools and equipment.
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4: Adaptation to Changes and Resource Management.

Description: Intuitive adaptation to new conditions without detailed analysis. Intuitive
management of resources and time.

Combined Initial Categories: Category 4: Adaptation to changes. Category 9: Search for
resources and time synthesis. Category 13: Time cycles and rhythms.

Criteria: Quick adaptation without analysis. Efficient use of resources and time without
planning. Intuitive synchronization of work with daily cycles.

Factors: Zin\Xi — intuitive adaptation; Resource-Searchint, Time-Synthesisint — intuitive
management of resources and time; Rhythmsint — intuitive synchronization of rhythms.

5: Influence of External Factors and Features of the Navigation Area.

Description: Intuitive perception of global and local conditions affecting navigation.
Subconscious consideration of navigation area features.

Combined Initial Categories: Category 10: World events. Category 15: Features of the
navigation area.

Criteria: Intuitive adaptation to global navigational practices. Deep, unconscious perception
of the locality.

Factors: WorldEvint — intuitive perception of world events; Agint — intuitive sense of place.

Generalizing and combining criteria into five main categories allows for more effective
analysis of operator-navigators' intuitive actions and simplifies the process of identifying such
actions in real-time.

5.3. Application of the Generalized Model

Identification of Intuitive Actions: Using the generalized categories enables faster and more
accurate detection of navigators' intuitive actions.

Risk Assessment: Each category is associated with certain risks, allowing for the assessment
of the potential impact of intuitive actions on navigational safety.

Development of Management Strategies: Understanding the general categories helps in
developing effective strategies to minimize the negative consequences of intuitive actions.

© IntuitiveActionModule ‘

o identifylntuitiveActions(): List<String>
o assessRiskForlntuitiveActions()
| @ developManagementStrategies()

1

-

categorizes into  |enables erforms

© IntuitiveActionCategory 1

o perceptionAndAssessment: Float © RealTimeAnalysis © RiskEvaluation
o decisionMaking: Float

o cognitiveProcessing: Float
o adaptationAndResourceManagement: Float
o externalFactorsAwareness: Float

o detectintuitiveActions() o assessRiskForCategory(category; String): Float
o evaluateRiskimpact() @ generateRiskReport()

K categorizeActions(actions: List<String>)

1
based on
P

(© Actioncriteria

o factors: Map<String, Float>

® defineCriteria{catégory: String, factors: Map<String, Float>)|

Figure 5 — Scheme of the Module for Identifying Intuitive Actions of Operator-Navigators

6. Module for Processing Navigational Data and Geolocations

The module for processing navigational data and geolocations enhances vessel safety and
efficiency by integrating automated decision support systems that account for data uncertainty and
incompleteness. Its objectives are to automate data collection from ECDIS, analyze and compare
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textual data and geolocations, visualize geographic data on interactive maps, and develop a
navigator decision support system based on the processed data.

6.1. The module comprises four main components:

6.1.1. Automated image processing and text recognition (OCR) captures real-time ECDIS
screenshots, preprocesses images, recognizes text using technologies like the Tesseract library, and
saves data for analysis without operator intervention.

6.1.2. Analysis and comparison of textual data and geolocations involves loading and
structuring data, comparing textual information between screenshots, calculating data similarity
using algorithms, and analyzing geolocations by computing distances with the Haversine formula.

6.1.3. Visualization of geographic data creates interactive maps displaying the vessel's route,
adds markers for specific locations and hazard zones, visualizes deviations from the planned route,
and updates maps automatically using tools like the Folium library.

6.1.4. Decision support for the navigator compares current navigational data with reference
templates, identifies risks, provides recommendations based on an expert action dictionary, and
integrates with other modules for comprehensive analysis, utilizing machine learning algorithms to
enhance recommendation accuracy.

6.2. Integration of these components ensures data integrity and consistency, speeds up data
processing and analysis, and improves decision-making through a comprehensive approach.

6.3. The module results in enhanced navigational safety by timely detecting risks and
reducing human errors through automation, economic efficiency by optimizing routes to reduce
sailing time and costs, and improved situational awareness via interactive visualization and relevant
recommendations. Implementing this module is crucial for automating data collection and analysis,
integrating modern technologies into decision-making, and adapting to different conditions and
navigator requirements.

Its implementation contributes to enhancing the safety and efficiency of navigation by
providing: Automation of navigational data collection and analysis. Integration of modern
technologies to improve the decision-making process. Ability to adapt the system to different
conditions and navigator requirements.
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Figure 6 — Scheme of the Module for Processing Navigational Data and Geolocations

7. Module for Predicting Ship Trajectories and Risk Assessment.

Building upon the decision support system (DSS) developed earlier, integrating a ship
trajectory prediction and risk assessment module is essential for enhancing maritime safety. This
module anticipates potential navigational scenarios and identifies threats in a timely manner,
providing navigators with relevant recommendations for optimal decision-making.

7.1. It closely connects with other DSS components by using data from navigational
processing modules as input for prediction models, and visualizations from Module 6 to display
predicted trajectories and risk zones.

7.2. Machine learning algorithms, such as multilayer neural networks, predict future ship
positions by adapting to specific sailing conditions and ship characteristics. The module analyzes
these predicted trajectories to assess risks of collisions or proximity to hazardous zones, considering
uncertainties and human factors, and classifies risks to prioritize actions. It integrates with the DSS
by providing prediction results and recommendations, which are visualized on interactive maps.
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7.3. This enhances maritime safety by timely identifying potential hazards, improves
decision-making efficiency with accurate recommendations, reduces navigator workload by
automating complex analyses, and optimizes routes by considering predicted conditions and risks.
Integrating this module ensures a comprehensive approach to navigational analysis, seamless data
exchange, and adaptability to various sailing conditions. Combined with previous modules, it
contributes to creating an effective DSS that enhances maritime safety and efficiency by reducing
risks and optimizing navigation processes.
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Figure 7 — Scheme of the Module for Predicting Ship Trajectories and Their Risks

Developing the module for predicting ship trajectories and risk assessment, in conjunction
with the previous six modules, allows for the creation of a comprehensive and effective decision
support system for the navigator. This contributes to enhancing the safety and efficiency of
maritime navigation by reducing risks and optimizing the navigation process.

Conclusion. A comprehensive navigator qualification model for automated ship control was
developed, incorporating technical, cognitive, and behavioral aspects to enhance real-time decision-
making and ensure safe navigation in dynamic environments. Key research tasks accomplished
include analyzing modern qualification assessment methods — such as fuzzy logic, neural networks,
and artificial intelligence — to integrate technical and behavioral aspects effectively.

The Navigator Qualification Model (NQM) was structured with modules for input data and
navigation parameters, hazard level assessment using fuzzy logic, navigator qualification
identification using neural networks, cognitive analysis of intuitive actions, navigational data and
geolocation processing, and ship trajectory forecasting and decision-making. These modules
collectively provide a systematic assessment of the navigator's professional competencies.

The model adapts to external factors and changing navigation conditions by using a
mathematical risk model that considers variables like speed, under-keel clearance, and weather
conditions. It identifies critical competencies for safe navigation and incorporates the human factor
in risk assessments through the analysis of intuitive actions.

Potential applications of the model include enhancing maritime safety by timely detecting
risks and providing minimization recommendations, personalizing navigator training by identifying
competency gaps, seamless integration with existing navigation systems without significant
infrastructure changes, and adaptability to varying conditions and individual navigator
characteristics.

Future research prospects involve expanding the training database to improve model
accuracy and reliability, implementing additional artificial intelligence elements for more precise
predictions and adaptability, and investigating the impact of the navigator's psychophysiological
state — such as stress and fatigue — on decision-making to further refine the model.

In summary, the research objective was achieved by creating a comprehensive qualification
model that combines fuzzy logic, neural networks, and artificial intelligence. This model
systematically assesses navigators' professional qualifications, crucial for safe and efficient
navigation. Implementing this model in maritime practice will enhance safety levels and optimize
ship management processes.
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IonomaproBa B., Hocor I1. POSPOBKA KBAJII®IKALIIMHOI MOJEJI CYIHOBOJIA U151 3AJIAY
ABTOMATHU30BAHOI'O KEPYBAHHA CY/JHOM

Jocnioocennst  cnpsamosane Ha  pospoOKY — KOMNJLEKCHOI  Keaniixayiiunoi mooelni  wmypmanié 6
aABMOMAMU3068AHOMY  VIPAGIIHHI ~ CYOHOM, SKA  OYIHIOE  MEXHIYHY, KOZSHIMUGHY Ma  NOBeJIHKOBY
KOMnemeHmHICmb 0Jis1 RIOBUUWCHHS eqheKMUSHOCII NPULHAMMSL PIUEHb Y PEAIbHOMY YACi 8 YMOBAX 3MIHHO20
HasieayiliHoeo cepedosuya.

Tonosuum suxnukom € inmezpayis nepedosUx MexHoN02Il, MAKUX K WMYYHUL IHMeleKm ma HeyimKa 102iKa,
071 MOYHO20 MOHIMOPUHZY PUBUKIE, WO BUHUKAIOMb Yepe3 TH00CbKULL PaKkmop.

Memooonoeia exkarouae cmeopenus mMooeni, KA OYIHIE KOMRemeHYil wmypmMana Wisixom iHmeepayii pisHux
acnexmis. [ani 3 ECDIS ma inwux cencopie obpobnsiomvca y eéekmop o3Hak. Ancopumm Mamoani acpezye
HeuimKi npasuida, wo UsHAYame Keanipikayilini napamempu, a HEUPOHHI Mepedici MOOenomy CKIAOHI
83aemo36'a3xku. Moodenv 8uxopucmogye Heuimxi DyHKyii HanexcHocmi Onsl OYIHKU PUBUKIB 3 YDAXYBAHHAM
weuoKocmi, nubUHY Nio Kiiem, N020OHUX YMO8 MA UMOBIPHOCHI 3IMKHEHHSL.

Pesynomamu nokazyiome, wo Mo0enb 6YACHO GUAGIAE NOMEHYIUHI PUUKU Md a6MOoMamu3ye npoyec
NPUUHAMMA PileHb, 3MEHWYIOYU HABAHMANCEHHA HA WMYPMAHA 8 CKIAOHUX ymoeax. Bowma egexmueno
NPOSHO3YE MPAEKMOPIIO CYOHA, I0eHMUDIKYE PUBUKOGI 30HU A HAOAE PEKOMEHOaYil w000 be3nexu.
Ipakmuuno ye niosuwye Oe3nexy Mopeniascmed yepes NepcoHaniz308any OyinkKy wmypmana. Inmeepayia 3
icnytouumu cucmemamu, maxumu ax ECDIS, npononye enyuxicmo 6e3 3HaAUMUx 3miH iH@pacmpykmypu.
Cucmema iHOUBIOYANi3ye PEKOMEHOAYIl, 3HUJCYIOUU DPUUK aA6apill ma HOKPAWYIOUU eqeKxmusHiCmb
niocomosku. Matloymui 00CniONHCeHHs 8KII0UAOMb POWUPEHHs 0a3U OaHUX 0711 Ni020MOBKU, YOOCKOHANEHHS.
aneopummie ma 6USYeHHs NIUBY NCUXOPI3I0N0IYHO20 CMAHY WMYPMAHA HA eQeKmuHICmb YNPAaLiHH:
CYOHOM.

Knrwowuosi cnosa: xepmoge ynpaeuinua; ORMUMI3AYisl NPoYecié KepyBauHs, MOOYlb AGMOMAMUUHO20
Kepy6aHHs, aeapitiHi cumyayii; mpancnopmui nomoku, ingopmayitina niompumka, Safety Depth; ECDIS;
MAaHe8pyBaHHA Y CIMUCHEHUX 800aX, CUCEMA PO3NIZHAGAHHS.
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