N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

UDC 004.58:004.8
METHOD OF DECISION SUPPORT FOR NAVIGATORS
FOR AUTOMATED CONTROL OF VESSEL TRAFFIC SAFETY
BASED ON ECDIS DATA

Ponomaryova Victoria, Graduate student, Kherson State Maritime Academy, Ukraine,
e-mail: vikkiivan@gmail.com; https://orcid.org/0000-0001-9660-1772.

Obijective of the research is to develop a method for integrating automated decision support tools for navigator
on the bridge of a sea vessel, considering the factors of uncertainty in the completeness of ECDIS data.

The primary problem of the research addressed is the need for accurate and efficient Decision Support
Systems (DSS) that account for uncertainties in electronic navigational data.

Research Methodology involves the development of automated modules: an OCR processing module for
ECDIS images using the Tesseract library, a module for comparing textual and geolocation data from ECDIS
screenshots using text comparison algorithms and geolocation calculations (Haversine formula), a geographic
data visualization module on an interactive map using the Folium library, and a decision support module for
navigators that includes analyzing of navigational data, determining their similarity, and providing
recommendations.

Research results demonstrate that the developed DSS significantly enhances navigation safety, reduces travel
time by 7% to 18%, and saves fuel, lubricants, and electricity. It increases the accuracy and efficiency of
navigation by automating OCR processing (capturing ECDIS screenshots in real-time, preprocessing images
to enhance OCR accuracy, extracting text, and saving it to files), text and geolocation data comparison
(analyzing information and geographic data to determine their similarity, loading data from files, and
calculating similarity), and data visualization on an interactive map (creating maps with markers and routes
based on geographic data).

Practical significance of the research lies in improving navigational decision-making processes, reducing
navigator workload, enhancing situational awareness, and minimizing collision risks in maritime navigation.
The DSS automates critical aspects of navigation operations, reducing the likelihood of human errors.
Prospects for further research include improving data integration methods to enhance the accuracy and
reliability of the DSS. Future work will benefit from the use of artificial neural networks to obtain better
approximations. An important aspect of DSS development is identifying navigator qualification parameters to
ensure logical conclusions regarding their actions and prevent undesirable consequences. Further research is
necessary to expand and verify the effectiveness of the DSS in real maritime navigation conditions, which will
improve algorithms for analyzing large volumes of data and integrating artificial intelligence to provide more
adaptive and autonomous solutions.

Bibliography: 23, figures 11.

Key words: ECDIS; automation; risk; uncertainty; automated control systems; intelligent systems; human
factor; maritime safety; qualification parameters; identification.

DOI: 10.33815/2313-4763.2024.1.28.022-040

Introduction. Keeping watch in adverse conditions increases the demands on navigators,
their qualifications, experience, and speed of making rational decisions [1]. Considering that in
complex situations where the full spectrum of navigation parameters is uncertain, the navigator has
terminal limitations for forming a comprehensive real-time picture of the situation [2]. In some
cases, enhancing safety can be assisted by autopilots, pilots, or tugs, but ultimately only the captain
is responsible for the safety of navigation [3]. The reduction in the number of watch team members,
combined with an increase in the number of navigational information systems, overloads navigators
in the waters of seaports, canals, etc. [4]. Additionally, the intensity of traffic and the need to
comply with COLREG rules compel captains to choose decision-making strategies very closely and
carefully, which, in conditions of limited experience despite qualifications, can lead to non-standard
and even critical situations [5]. All of this necessitates new informational approaches in the
development of decision support technologies that narrow the navigator's focus on key aspects,
processing a significant flow of information in real-time.

For the creation of decision support systems (DSS) for navigators, the application of big data
and analytics for ship identification and collision risk analysis using deep reinforcement learning is
considered, which allows for route optimization and enhances navigation safety. A separate
direction is the use of artificial intelligence, automated systems, and fully autonomous robots to

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

mailto:vikkiivan@gmail.com
https://orcid.org/0000-0001-9660-1772

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

improve port logistics and cargo transportation, promoting efficiency and reducing human
intervention [6].

Thus, the development of specialized DSS in navigation systems will not only improve the
accuracy of forecasts but also provide additional levels of control and support. Such systems will
help analyze large volumes of data in real-time, assisting the captain in making more informed
decisions while managing the ship's movement.

Problem Statement. Given the above, the development of a navigator decision support
system (DSS) under conditions of partial uncertainty directs research into the following scientific
directions:

1. Reducing the workload on navigators. With the increasing volume of information coming
from navigation systems, navigators often face overload, which can lead to errors. It is important to
develop systems that will effectively filter and prioritize information, displaying only the most
critical data to the navigators.

2. Improving situational awareness. In complex navigational conditions, especially in
narrow channels and ports, navigators may not have a complete picture of the situation. It is
important to implement technologies that will help create a comprehensive and accurate picture of
the navigational situation.

3. Minimizing collision risks. Despite the introduction of new technologies, the risk of
collisions remains high, especially in conditions of intense traffic. Decision support systems should
include algorithms for analyzing ship trajectories and warning about deviations from a safe course.

4. Optimizing ship movement. To increase navigation efficiency and reduce risks, it is
necessary to use artificial neural network training to identify the level of danger regarding the ship's
position and further optimize ship routes considering current conditions.

5. Analyzing navigator qualifications. It is important to develop computer programs to
identify the qualification level of the navigator and analyze the impact of qualification levels on
ship management methods in special and dangerous navigation areas.

Considering these scientific directions, a critical review of scientific sources will be
conducted.

When considering a decision support system using radio communication for small vessel
captains in the Caribbean Sea, the study noted the use of artificial neural networks. However, it
lacks a detailed description of the model and comparison with other approaches, necessitating
further research to confirm the results [7]. The integration of artificial intelligence, big data, and
remote control for risk management in autonomous navigation is theoretically substantiated, but
lacks sufficient methodology or data to confirm effectiveness, requiring practical testing of the
model [8].

The method for determining collision risks using AIS data has limitations due to data
transmission delays and incompleteness, indicating a need for empirical verification of its
effectiveness in real navigation conditions [9]. To improve data transmission, the use of VDES
instead of AIS is proposed. Although the new standard promises significant improvements, the
study lacks real-world data to confirm the system's effectiveness in maritime navigation [10].

The integration of sensor technologies to improve the accuracy and reliability of navigation
systems, as well as ensuring cybersecurity, is an important aspect of the research. Additionally, the
need for improved personnel qualifications is emphasized [11]. The use of artificial intelligence,
machine learning, big data analytics, and the Internet of Things for enhancing maritime navigation
safety highlights the importance of processing large volumes of data and ensuring cybersecurity [6].

The analysis of methods for detecting marine objects using RGB cameras underscores the
challenges associated with variable lighting conditions and weather phenomena. However, the
application of deep learning methods requires significant computational resources [12].

The development of intelligent systems for predicting marine conditions using deep learning
algorithms and image processing shows promise but needs real-world validation to confirm
effectiveness [13]. The use of various sensors for data collection on the navigational environment

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

emphasizes the importance of visual perception and target detection at distances up to 6 nautical
miles. Issues such as "blind spots" and signal loss are noted [14].

The integration of AIS data for modeling and forecasting the trajectories of other vessels
using deep learning technologies underscores the need for additional data processing and
verification [15]. In certain situations, the approach for Smart Maritime Autonomous Surface
Vessel (SMASV) based on an improved Soft Actor-Critic (SAC) algorithm demonstrates high
efficiency but requires real-world confirmation [16].

Probabilistic models also show potential, as exemplified by the dynamic Bayesian network
(DBN) model for risk analysis in intelligent navigation of autonomous ships. This approach is
effective but requires precise data and significant computational resources [17]. The application of
the RMA model for classifying images of navigational signs achieves high accuracy but must
consider the limitations of real navigation conditions and parameter settings [18]. Developing
methods to ensure the functional resilience of navigation systems in non-standard situations is
crucial, highlighting the need for further research to confirm the effectiveness of these methods
[19].

The new AN-YOLOV4 algorithm for detecting navigational signs increases accuracy to 92%
through the use of DCGAN and pyramid image methods, but real-world technical challenges must
be addressed [20]. In other studies, the intelligent decision-making system for analyzing the state of
the ship and ensuring hull balance uses loT technologies for monitoring and data collection, but
requires high-quality data and algorithms [21].

To account for uncertainty, fuzzy set theory and fuzzy logic are recommended for expert
evaluations, emphasizing the need for real-world implementation of these methods [22]. However,
such systems require a high level of data verification from experts. The use of virtual reality (VR)
for crew training creates an interactive and realistic environment, but demands significant
computational resources and user adaptation [23].

Thus, the development of a navigator DSS under conditions of partial uncertainty aims to
reduce the workload on navigators, improve situational awareness, minimize collision risks,
optimize ship movement, and analyze navigator qualifications. The main problem lies in the impact
of a large amount of data and complex navigation conditions, which can lead to errors and dangers.
To solve this problem, it is necessary to develop a system that effectively filters and provides the
most critical information, improves awareness of the navigational situation, and takes into account
the navigator's qualification level to enhance navigation safety and efficiency.

Research Purpose and Objectives. The aim of the research is to develop a method for
integrating automated decision support tools for a navigator on the bridge of a sea vessel,
considering the factors of uncertainty in the completeness of ECDIS data. To achieve this goal, a
number of tasks must be solved to create a navigator DSS by developing automated modules:

1. Develop a module for automated OCR processing of images and text recognition on
ECDIS display images in real time. The software module is designed to capture screenshots,
preprocess images to enhance OCR accuracy, extract text from images using the Tesseract library,
and save the extracted text to a file. Accomplishing this task will prepare the data for further
analysis and ensure high text recognition accuracy.

2. Develop a module for comparing textual data and geolocations to analyze information and
geographic data between different ECDIS screenshots to determine their similarity. The module
includes loading data from files, analyzing key values using text comparison algorithms, and
calculating the similarity of geolocations. Automating this process will speed up data analysis and
support informed decision-making. Completing this task is essential for subsequent stages as it
provides reliable data for comparison and analysis.

3. Develop a module for visualizing geographic data on a map, which includes creating
interactive maps with markers and routes based on geographic data. The use of the Folium library is
planned to create the map, add markers for each coordinate, visualize the ship's route and activity
zone, and save the map in HTML web format. The data visualization module on the map will

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBui BicHUK XepCOHCBHKOI Aep:kaBHOI MOpchKoi akaneMii WL PA AP L]

ensure clarity and convenience for further analysis within the DSS, promoting a better
understanding of movements and geographic patterns.

4. Develop a decision support module for a navigator, which will include comparing
navigational data between pattern files, determining similarity between them, and providing
recommendations based on this similarity. The module will load data from files, compare key
values, calculate the similarity of textual data and geolocations, and output recommendations from
an expert dictionary. Automating this process will effectively analyze navigational data, identify
pattern files with high similarity, and provide specialized recommendations. Completing this task
will form the core data and analytics for strategic decision-making by a navigator.

Primary Research Material. To achieve the research objective, it is necessary to develop
integration modules for incorporating these DSS tools into the navigator's workflow on the bridge
of a sea vessel. This involves addressing several key tasks: ensuring the completeness and accuracy
of electronic navigational data (ECDIS), automating data processing and analysis, and providing
navigators with timely and actionable recommendations.

To accomplish these tasks, the creation of automated modules, which constitute the core
components of the navigator DSS, is proposed. These include modules for optical character
recognition (OCR) to process ECDIS images, geolocation comparison to analyze and validate
navigational data, and visualization tools to enhance situational awareness through interactive maps.
Additionally, the decision support module is designed to compare navigational patterns and provide
specialized recommendations based on the analysis of textual and geospatial data.

To create the navigator DSS, the route to the port of Lagos, Timkan was chosen (Figure 1).
In collaboration with an expert, Captain of the long voyage, PhD, Pavlo Momenko, an action
dictionary was compiled for each stage of the route, according to ECDIS data.

Figure 1 — Fragments-screenshots of the ECDIS TRANSAS system display in the port of Lagos

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

Considering the data from the ECDIS TRANSAS navigational information systems, the
stages of the navigator's actions (expert system dictionary) were determined, which were
subsequently planned to be integrated into the navigator DSS.

Initial data on the stages for creating the navigator DSS:

Stage 1. Initial Preparation: The captain and the bridge team review the route plans and port
information, considering specific restrictions or requirements.

Stage 2. ECDIS Nel (Screenshot 20210611110841). Preparation of the Pilot Ladder: Setting
up the ladder according to the pilot's instructions (side, height, straps). Speed adjustment:
controlling the ship's speed according to the pilot's instructions, reducing speed if necessary. Visual
and radar monitoring: monitoring the navigational situation using radars, with special attention to
dredging vessels. Using the echo sounder: monitoring the water depth under the keel, cross-
checking with the electronic chart. Fixing the ship's position: marking the position on the e-chart at
5-7 minute intervals. Ship movement: moving at a speed of 12.5 knots, adjusting the speed. Course
angle 19.30, ground course 14.70.

Stage 3. ECDIS Ne2 (Screenshot 20210611115028), ECDIS N3 (Screenshot
20210611115557), ECDIS Ne4 (Screenshot 20210611120848), ECDIS No5 (Screenshot
20210611121957): Communication: maintaining contact with the port's vessel traffic service and
the pilot via VHF channels 16/12. Ship speed adjustment: reducing speed to DSAH (dead slow
ahead) to 4 knots, which is the minimum safe speed for ship maneuverability using the rudder.
Navigational planning and control: more carefully monitoring the depth under the keel in
accordance with the ship's draft, especially when approaching the 30-meter isobath, monitoring the
course angle 004.5° and ground course 354.8°. Ship maneuvering: performing maneuvers with
reversing the main engine and using the bow thruster, awaiting the pilot.

Stage 4. Pilot Boarding: Establishing radio communication: the captain establishes radio
contact using the VHF receiver on channels 16/12. Monitoring the pilot boat: visually observing the
approach of the pilot boat. Managing ship speed: moving the ship at a speed of 6 knots, as indicated
by the pilot. Navigational planning: changing the ship's course towards the entrance channel,
defined by navigation buoys. Checking the pilot ladder: the watch officer goes to the main deck to
the pilot boarding area to check the pilot ladder according to international requirements (Resolution
A.1045(27) and IMAP Notice Ne 849).

Stage 5. ECDIS Ne6 (Screenshot 20210611122409): Speed and course management of the
ship: the ship moves at a speed of 6 knots, set by the pilot, the captain adjusts the course to the
entrance channel according to the route in ECDIS. Coordination with the pilot boat: the watch
officer monitors the pilot's boarding and informs the captain after the safe departure of the boat.
Pilot reception: the watch officer accompanies the pilot to the bridge, the captain provides the pilot
with information about the ship through the pilot card and the main engine characteristics and ship's
maneuvering characteristics. Beginning of the second maneuvering stage: after providing
information to the pilot, the second maneuvering stage begins — pilotage, which requires
coordination between the captain, the watch officer, and the pilot for the ship's safety when
approaching the port and maneuvering in the port area.

Stage 6. ECDIS Ne7 (Screenshot 20210611122937), ECDIS N8 (Screenshot
20210611124034): Maneuvering along the fairway: the ship follows the approach fairway, marked
by red buoys on the left and green buoys on the right (IALA region A system). Controlling ship
speed and course: ship speed (SOQG) is 6.2 knots, course (COG) 348.8°. Using Parallel Indexing
(PI): the captain uses PI to control the ship's position relative to the shoreline and landmarks, setting
distance limits. Monitoring depth under the keel: tracking depths on the sea chart and cross-
checking with echo sounder readings to ensure safe depth under the keel. Adjusting speed
depending on conditions: speed increases to SAH (slow ahead) 8-10 knots for better
maneuverability, and decreases to DSAH (dead slow ahead) 6-8 knots for precise maneuvering
when approaching the dock.

Stage 7. ECDIS Ne9 (Screenshot 20210611124452), ECDIS NelO (Screenshot
20210611124902), ECDIS Nell (Screenshot 20210611125313), ECDIS Nel2 (Screenshot

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

20210611125928): Maneuver preparation: the bridge team carefully studies and plans maneuvers in
difficult sections of the fairway, highlighted in the Harbour Approach & Manoeuvring Plan.
Maneuvering during approach: performing a 90° turn to the left, changing the course to the required
direction, then maneuvering to the right to 220°. Controlling speed and course: increasing speed to
8-10 knots for maneuverability, then reducing to 6-8 knots for precise maneuvering. Ensuring
safety: strictly following the pilot's commands and helm adjustments with high attention. Using
Parallel Indexing (PI): setting distance limits relative to landmarks or the shoreline for safe
distances. Integration with ECDIS: information about the ship's speed, helm angle, and point of
helm adjustment is added to the electronic chart. Responding to conditions: the captain remains
attentive and ready to intervene in case of unsafe maneuver execution by the pilot.

Stage 8. ECDIS Nel3 (Screenshot 20210611130013), ECDIS Nel4 (Screenshot
20210611130326), ECDIS Nel5 (Screenshot 20210611130626): Coordination with the pilot and
helmsman for maneuvers: close cooperation with the pilot for precise maneuvering, especially
during 90° and 220° turns, evaluating performed maneuvers and readiness to intervene in case of
accident risk. Adjusting ship speed: ship speed (SOG) varies between 7.4 and 7.2 knots during
maneuvering. Navigational control using Parallel Indexing (PI): using PI to establish safe distances
from the shoreline and moored vessels. Monitoring the suction effect: maintaining speed modes to
minimize the risk of creating a suction effect that can damage the mooring lines of moored vessels.

Stage 9. ECDIS Nel6 (Screenshot 20210611130909), ECDIS Nel7 (Screenshot
20210611131354), ECDIS Nel8 (Screenshot 20210611131820): Navigation: the ship moves in port
waterways at a speed of 7.6 knots (SOG), the ship's course (COG) changes from 250 to 350
degrees, indicating direction changes during maneuvering. Maneuvering operations: the captain
coordinates maneuvers for safe passage near moored vessels, maintaining distance from the
shoreline and other obstacles. Speed control: the captain controls the speed to minimize the risk of
damaging moored vessels and their mooring lines due to the suction effect. Communication with
the bridge: the captain maintains constant communication with the bridge and helmsman for quick
and accurate execution of maneuvering commands.

Stage 10. ECDIS Nel9 (Screenshot 20210611132652): Preparation for towing: the ship
reduces speed to 4-5 knots for safe approach to the tugs. The captain organizes mooring teams
under the direction of the third mate on the bow and the second mate on the stern. Communication
with tugs: commands for tugs are given through the pilot and the captain; direct communication
between crews is excluded. Attention to the human factor: the captain focuses on avoiding errors
due to language barriers or professional differences. Navigational parameters: the ship's course
(COG) is 250°-278°, speed (SOG) 4-7 knots, indicating preparation for docking or towing.

Stage 11. ECDIS Ne20 (Screenshot 20210611132715): Controlling the ship's speed and
direction: the ship's speed is reduced to 4.3 knots for controlled approach to the dock with the
possibility of reversing. Cooperation with tugs: the captain coordinates actions with tugs after
confirming their readiness. Reversing the main engine: depending on the distance to the dock and
the ship's speed, the captain chooses between reversing the main engine or additional tug thrust.
Ship handling: the rudder is used for precise control of the ship when approaching the dock, even at
low speed.

Stage 12. ECDIS No21 (Screenshot 20210611133405), ECDIS Ne22 (Screenshot
20210611133627), ECDIS Ne23 (Screenshot 20210611133740), ECDIS Ne24 (Screenshot
20210611133903): Parallel docking of the ship: the captain coordinates actions to position the ship
parallel to the dock, using tugs at a speed of 0.5 knots, then 0.0 knots. Main engine readiness for
maneuver: the main engine is ready for any necessary maneuver at the captain's command.
Preparation for an emergency: the boatswain and the mooring team are ready to use the anchor in
case of an unforeseen situation. Mooring operations: the captain instructs the mooring teams on the
bow and stern regarding the delivery of mooring lines to the dock. Completion of maneuvering:
after securing the mooring lines and releasing the tugs, the captain completes the maneuvering,
gives the command to stop using the main engine, and the pilot leaves the ship.

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

The data within the expert system dictionary allowed the transition to creating software
modules for the navigator DSS as a whole.

1. Development of an automated OCR module for image processing and text recognition on
ECDIS display images in real time on the bridge (Figure 2).

Detailed description of the program processes for OCR image processing with specified
regions of interest (ROI):

Initialization and loading libraries:

Loading necessary modules: import cv2, pytesseract, os, pyautogui, pygetwindow as
gw, time.

Setting configuration for pytesseract: pytesseract.pytesseract.tesseract cmd =

r'C:\Program Files\Tesseract-OCR\tesseract.exe'.
Capturing screenshots (take_screenshots):
Flndlng the window by title; window = gw.getWindowsWithTitle (window title) [0].
Checking window activity and activating if necessary: if not window.isActive:

window.activate () .

Capturing and saving the screenshot: screenshot = pyautogui.screenshot() ra
screenshot.save (filename), ne filename = os.path.join(save folder, f"{time.strftime

('%Y3m%d-%HSM%S') } .png").

Repeating the process at a specified interval: time.sleep (interval).

Preprocessing the image for OCR (preprocess_image):

Reading the image: image = cv2.imread(image path).

Converting the image to grayscale: gray_image = cv2.cvtColor (image,
cv2.COLOR BGR2GRAY) .

Extracting text from the image (extract_text_from_image):

Configuring and running OCR: text = pytesseract.image to string(image, config='--
oem 3 --psm 11').

"Python Script! "pyautogul® "pygetwindow” "ev2! "pytesseract”
Install pyautegul

|

Install pygetwindow

Set path to tesseractexe

loop [Take Screenshots]

Get window with title

‘Window object

alt [Window Is active]

Take screenshot
——

Save screenshot

[Window not active]

Activate window

L3

loop [Process Images]

Read image from folder

Convert image to grayscale

Extract text from image

Save text tofile

—

"Python Script” "pyautogul® "pygetwindow” "ov2! “pytesseract’

Figure 2 — Structure of the ECDIS Image Processing and Text Recognition Module

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

Saving text to a file (save_text_to_file):

Opening the file and Writing the text: with open(file path, 'w', encoding='utf-8') as
file: file.write(text).

Processing all images in a folder (process_images_from_folder):
Iterating over files in the folder: for root, dirs, files in os.walk(folder path).
Processing each image and saving the text: preprocessed image =

preprocess image (file path), text = extract text from image (preprocessed image),
save text to file(text, text file path).

Managing threads and user interaction:

Creating a thread: screenshot thread = Thread (target=take screenshots,
args=(window title, screenshot folder, 10)).

Starting the thread: screenshot thread.start ().

Waiting for user input. input("HaTwcuirs Enter, xomm sakidumre npaumwBaTM 3
nporpamon. ..").

This approach ensures systematic and automated extraction of textual information from
specific areas of the image, which can be useful for analyzing images with consistent structures,
such as forms, maps, or other documents.

1.2. OCR image processing with specified regions of interest (ROI). Detailed ROI collection
involves gathering key navigational data from ECDIS (Figure 3).

Initialization and loading libraries:

Importing libraries: import cv2, pytesseract, os.

Setting configuration for pytesseract: pytesseract.pytesseract.tesseract cmd =

r'C:\Program Files\Tesseract-OCR\tesseract.exe'.
Defining the region of interest (ROI) on the image (get_roi):
Getting a part of the image by specified coordinates: return imagelyl:y2, x1:x2].
Performing OCR for the defined region (ocr_zone):
Defining ROI using get_roi: roi = get roi (image, =1, yl, x2, y2).

Using pytesseract to recognize text in the area: text = pytesseract.image to string(roi,
config='--psm 7').

Cleaning and returning the obtained text: return text.strip().
Image processing procedure (process_image):
Reading the image: image = cv2.imread(image path).

Converting the image to grayscale to enhance OCR accuracy: gray image =
cv2.cvtColor (image, cv2.COLOR BGR2GRAY) .

Defining zone coordinates and collecting data using OCR for each zone: data = ({key:

ocr zone(gray image, coords) for key, coords in zones.items()}.
Saving data to a file (save_data_to_file):
Opening the file for Writing: with open(file path, 'w', encoding='utf-8') as file.
Writing data to the file: file.write(f"{key}: (vaiue}\n" for key, value in data.items()).
Main function for processing images in a folder (main):
Iterating over all images in the folder: for file name in os.listdir(folder path).
Checking the file format (accepts image files): if file name.lower().endswith(('.png’,
'.Jpg', '.Jpeg')).
Processing each image and saving the results: data = process image (file path),
save data to file(data, text file path).

Outputting results or errors: print(f"fani 3 {file name} 3Gepexexo B
{text file path}"), print (f"lommnka npm oBpobui odarnny {file name}: {e}").

This approach ensures systematic and automated extraction of textual information from
specific areas of the image, which can be useful for analyzing images with consistent structures,
such as forms, maps, or other documents.

For example, ECDIS Ne3 (Screenshot 20210611115557) data, processed by the developed
software module, has the following automatic identification: date: 11 Jun 2021; time: 12:55;
heading hdg: 000.5"; speed: 2.5kn; course cog: 357.7; latitude: 06° 19.513' N; longitude: 003°
25.073" E; waypoint_wpt: To WPT: 10; distance_to_wpt: DIST to WOP: 0.32 NM; time_to_go:
Time to Go: 0: 7'37"; next wpt: ‘Next WPT: 1; next course: ‘Next Course: 338.1";

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

distance_between_wpt: Distance: 2.43NM; plan_speed: Plan Speed: 17.0kn; plan_course: Plan
Course: 017.6°.

"Python Script" "cv2" "pytesseract”

Set path to tesseract.exe

A4

Load image from path

v

Return image

loop [OCR Zones]

Get ROI from image

v

ROl image

Perform OCR on RO

A4

Extracted text

Save data to file

-

"Python Script" "cv2" "pytesseract"

Figure 3 — Structure of the Image Processing Module with Navigational Data Zones from ECDIS

2. Development of a module for comparing textual data and geolocations to analyze
information and geographic data between different ECDIS screenshots (Figure 4).

Initialization and loading libraries:

Importing libraries: import os, from difflib import SequenceMatcher, from math import
radians, cos, sin, asin, sqgrt.

Loading data from a file (load_data_from_file):

Opening the file and reading lines: with open(file path, 'r', encoding='utf-8') as
file: lines = file.readlines().

Extracting keys and values from file lines: data = ({line.split(':')[0].strip():

line.split(':') [1].strip() for line in lines if line.strip()}.
Comparing data (compare_data):
Determining common keys for comparison, excluding 'date' and 'time": xeys to compare =

set (test data.keys()) & set(reference data.keys()) - {'date', 'time'}.
Calculating Similarity for each key: scores = [SequenceMatcher (None, test datalkeyl],
reference datalkey]) .ratio() for key in keys to compare].

Returning the average similarity as a percentage: return sum(scores) / len(scores) * 100
if scores else 0.

Converting DMS to decimal coordinates (dms_to_decimal):
Cleaning the coordinate string and splitting it into parts: parts = dms str.replace('°",

'').replace("'", '').replace('"', '"').split().
Converting degrees and minutes to decimal degrees, accounting for direction: decimal =
degrees + minutes / 60, if direction in ['S', 'W']: decimal = -decimal.

Calculating the distance between two points (haversine):

Converting coordinates to radians and calculating the difference: dion = 1on2 - 1onl, dlat
= lat2 - latl.

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

"Python Script” "os* "File YO "Data Analysis" "Geographic Calculations”

List test data files
- e

Test files list
e B ey,
loop [For each test file]
Load data from file
Test data
B e e RS SRR ERANGEY

List reference data files
R —

Reference files list

loop [For each reference file]

Load data from file

Reference data

Compare test data with reference data

Simitarity score

Calculate geographic similarity

Location similarity score

Display results.

P

“Python Script™ “os* “Flle vO* *“Data Analysis” "Geographic Calculations™
Figure 4 — Structure of the ECDIS Information and Geographic Data Analysis Module
Calculating the distance using the Haversine formula: a = sin(dlat/2)**2 + cos(latl) *

cos (lat2) * sin(dlon/2)**2, c = 2 * asin(sqgrt(a)), return c * r.
Calculating location similarity (calculate_location_similarity):

Determining coordinates and calculating the distance: distance = haversine(latl, lonl,
lat2, lon2).

"Python Script® “File 110" "Geographic Parser" “Folium Map"

Read file paths
N

List of file paths

loop [For each file]

Parse coordinates from file

Latitude, Longitude, File number

4

Initialize map

loop [For each
coordinate]

Add marker

Add concentric circles

U

Add polyline route

[

Save map as HTML

QOpen map in web browser

D

"Python Script® "File 170" "Geographic Parser” "Folium Map"

Figure 5 — Structure of the Geographic Data Visualization Module

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

Converting distance to percentage similarity: return max (0, 100 - (distance / 1 * 100)).
Main function for comparing files (main):
Loading and comparing data from test and reference files: test data =

load data from file(test data file), reference data = load data from file
(reference file path), similarity = compare data(test data, reference data).

Outputting similarity results and sorting in descending order:
comparison results.sort (key=lambda x: x[1], reverse=True).

Checking similarity by geolocation: for file name, . reference data in
comparison_ results, loc_similarity = calculate location similarity(test data,

reference data).

This approach describes in detail how your program processes data, compares it based on
textual information and geolocation, and organizes the output of results, allowing easy
identification of files with a high level of similarity.

3. Development of a geographic data visualization module, which includes creating
interactive maps with markers and routes based on geographic data.

Initialization and loading libraries:

Importing libraries: import folium, import os, import glob, import webbrowser.

Converting coordinates to decimal format (convert_to_decimal):

Converting degrees and minutes to decimal coordinates: value = float (degrees) +
float (minutes) / 60.

Adjusting value for southern and western coordinates: if direction in ['S', 'W']: value

= -value.

Parsing coordinates from files (parse_coordinates):

Opening the file and reading data: with open(filename, 'r', encoding='utf-8') as file:
lines = file.readlines ().

Selecting lines with latitude and longitude information: 1atitude line = next((line for

line in lines if "latitude:" in line), None).

Cleaning latitude and longitude information and splitting into parts: 1atitude info =
latitude line.split('latitude:') [1]. strip() .replace('°"', ' ') .replace("'",).
replace('"', '").

Calculating decimal coordinates: 1atitude = convert to decimal (lat deg, lat min,
lat_dir).

Creating the map and adding markers (Figure 6):
Initializing the Map: map = folium.Map (location=[0, 0], zoom start=5).

Addlng markers to the map with popup text: folium.Marker ([lat, lon],
tooltip=popup_ text) .add to(map) .

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

(B —
M‘x‘&é”'@

Figure 6 — Creating Interactive Maps with Route and Danger Zone Markings

Adding concentric circles and routes:

Adding different radii for skin coordinates: folium.circle(location=[lat, lon],
radius=50, color='blue', fill=True).add to (map) .

Creating a polyline to visualize the route: folium.PolyLine(route coordinates,
color="blue", weight=2.5, opacity=1) .add to(map).

Saving the map and opening it in a browser:

Saving the map to an HTML file: map.save ('map.html") .

Automatically opening the map in a web browser: webbrowser.open ('map.html', new=2) .

This program automates the process of creating an interactive map with markers that display
locations from data in text files. It can visualize routes and activity zones, making it ideal for
geographic analysis or tracking movements within research projects or logistics operations.

3.1. Detailed description of the program processes that read geographic positions from files
and visualize them on an interactive map by adding markers indicating deviations from the base
ship coordinate (Figure 7):

"Python Script” "File 110" "Folium Map"

Read all files from directory

List of files

loop [For each file]

Read positions and origin from file

New positions, Qrigin

alt [Origin found]

Initialize map with origin

Add markers for new positions

[No Origin found]

Use default coordinates [0,0]

Initialize map with default location

Save map as HTML

<

Open map in web browser

e

"Python Script” "File /1O" "Folium Map"

Figure 7 — Creating Interactive Maps with Markers Indicating Deviations from the Standard

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

Initialization and loading libraries:

In1p0rﬁng necessarylibraﬂes:import folium, import webbrowser, import os.

Reading positions and the initial point from a file (read_positions_and_origin):

Opening the file and reading all lines: with open(file path, 'r', encoding='utf-8') as
file: lines = file.readlines().

Finding the line containing the initial point label and parsing coordinates: origin coords =
origin parts[l].strip().strip('[]"').split(',"), origin lat, origin lon = [float (coord)
for coord in origin coords].

Recording new positions after finding the initial point: if 'm' in line and origin_found:
new_positions.append((lat, lon)).
Creating a map with all positions for the directory (create_map_with_all_positions):

Getting a list of files with specific suffixes: a11 files = [f for £ in
os.listdir(directory) if f.endswith(" s.txt")].

Checking for the presence of files and selecting the first file to initialize the map:
first file path = os.path.join(directory, all files[O0]).

Initializing the map with the first initial point: my map
folium.Map (location=first origin, zoom start=15).

Adding markers to the map:

Reading positions and initial points from all files in the directory: new positions, origin
read positions and origin(file path).

Adding markers for initial points and new positions: folium.Marker (origin,
icon=folium.Icon(color="'red')) .add to(my map) Ta for lat, lon in new positions:
folium.Marker([lat, lon]).add to(my map).

Saving the map and opening it in a web browser:
Saving the map to an HTML file: my map.save('all positions map.html').
Automatically opening the map in a web browser (Figure 8): webbrowser.open

('all positions map.html', new=2).

9
: 9
Q
e
e
o g
o o39 ©
-

Figure 8 — Visualizing Multiple Markers on an Interactive Map by Safety Level

This program allows the visualization of geographic data from multiple files, integrating
them into a single map, making it easy to analyze and compare geographic tracks and identify
different geolocations specified in the data.

4. Development of a Decision Support Module for the Navigator, which will include
comparing navigational data between pattern files, determining their similarity, and providing
recommendations based on this similarity (Figure 9).

Initialization and loading libraries:

In1porﬁng necessary libraries: import os, from difflib import SequenceMatcher, from
math import radians, cos, sin, asin, sqgrt.

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

Loading data from a file (load_data_from_file):
()pening the file and reading lines: with open(file path, 'r', encoding='utf-8') as

file: lines = file.readlines().
Extracting keys and values from file lines: data = {line.split(':')[0].strip():
line.split(':") [1l].strip() for line in lines if line.strip()}.

Comparing data (compare_data):
Determining common keys for comparison, excluding 'date’ and 'time": xeys to compare =
set (test data.keys()) & set(reference data.keys()) - {'date', 'time'}.

Calculating similarity for each key: scores = [SequenceMatcher (None, test datalkeyl,

reference_data[key]).ratio() for key in keys to compare].

Returning the average similarity as a percentage: return sum(scores) / len(scores) * 100

if scores else 0.

"Python Script" "File VO" "Data Analysis” "Geographic Calculations"

Read test data files

List of test files

L ians s sa e n s RO AN OV S B FAN ORI
loop [For each test file]
Load data from file
Test data
5
List reference data files
List of reference files
8o e s s
loop [For each reference file]
Load data from file
Reference data
P S —
Compare data (text)
Similarity score
R e LR
Calculate location similarity
Location similarity score
T T N

Display results and recommendations

-

"Python Script” "File ¥O" "Data Analysis” "Geographic Calculations™

Figure 9 — Visualization of Multiple Markers on an Interactive Map by Safety Level

Converting DMS to decimal coordinates (dms_to_decimal):

Cleaning the coordinate string and splitting it into parts: parts = dms str.replace('°’,
'').replace("'", '').replace('"', '"').split().

Converting degrees and minutes to decimal degrees, accounting for direction: decimal =
degrees + minutes / 60, if direction in ['S', 'W']: decimal = -decimal.

Calculating the distance between two points (haversine):

Converting coordinates to radians and calculating the difference: dion = 1on2 - 1onl, dlat
= lat2 - latl.

Calculating the distance using the Haversine formula: a = sin(dlat/2)**2 + cos(latl) *
cos(lat2) * sin(dlon/2)**2, ¢ = 2 * asin(sqgrt(a)), return c * r.

Calculating location similarity (calculate_location_similarity):

Determining coordinates and calculating the distance: distance = haversine(latl, lonl,
lat2, lon2).

Converting distance to percentage similarity: return max (0, 100 - (distance / 1 * 100)).

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

Main function for comparing files (main):
Loading and comparing data from test and reference files: test data =

load data from file(test data file), reference data = load data from file
(reference file path), similarity = compare data(test data, reference data).

Outputting similarity results and sorting in descending order:

comparison results.sort (key=lambda x: x[1], reverse=True).

Checking similarity by geolocation: for file name, . reference data in
comparison_ results, loc_similarity = calculate location similarity(test data,
reference data).

Providing recommendations based on comparison results:
Finding files with the highest similarity rating and outputting corresponding
recommendations from the diCtionary: if top file in recommendations: for rec in

recommendations[top file]: print(rec).

This program automates the comparison of navigational data by determining similarity
across various parameters, identifying the relevant file(s) to provide specialized recommendations
based on this data (Figure 10).

U mux Wux myuye Eux mWux Eux Eux Eux REux EUx +

B0 » m & » Code v & Pyihon 3 (ipykemal) O

Locatien similarity (for those above 97%):

Location similarity with ECDIS W1 (Screenshot2821861111@841) data.txt: 18€.096%
Cnpofiz BueecTH pexomeHgauil gna: ['ECDIS 8511118841)_data.txt']
Mepesipka gakna: ECDIS W1 (Screenshot2@2l8611118841) data.txt

1 (Screenshot

Fexomengaulil gna ECDIS W1 (Screenshotl@218611118841) data.txt:

1. MigroTosxa AOYMAHCEKOro Tpany: BCTaHORNEMHE Tpany signosigHo go imcTpyxuid noumawka
{axuh BopT, edcora ein pieds sogn, wasedicTe gonomizwax cTponie “manrops”).

2. PerynweasHA wewgkocTl: KowTpone weMgeocTl cyaHa arigve exaszieor noumada, npu weofxig
HOETL BMEHWEHHA LBMAKOCTL AnA minimizauii edexTy npocifanHa cyama.

3. BimyancHuid Ta panionokauiiiMui koWTpons: HITOPMHE HABKOMWWHBOI Hamirayuidkol cuTyaui
ionokauiikmx cucTem, OcoBnwesa yeara go pyxy AHONOrNuBNWEaNEHWK CySEH

1 3a Jonomorol pag
y nopTy Ta nigx
4. BHKOPWUCTEHHA =X0no
womnakil, ssipawsM 3 rARGHHaEMM, NOKaZaHAMM Ha e-KapTi.

5. Oikcayins nosmuli cygHa: BigaWadewHs nosnuil cygHa Ha e-KapTi 33 QONOMOrow cHoTeMd D

{ancTtaduin) 1 P [nenewr) 3 iHTepeanom KomHL 5-7 xERARH.

§. Pyx cygHa: Pyx 31 wewakicTw 12.5 eyanis, peryneossHow 5 3anewHocTi i ymos. Kypcosw
A kyT (heading) 19,32 3 kypcom BifkocHo FpyHTY [(course over ground) 14,78, wo BpaxoRye

8raue Te-il ans zfepekedds NPOKNAAEHOTD MAEDUWRYTY.

Figure 10 — Implementation of the Navigator Decision Support System

dapsaTepi.
Ta: MocTiikuil koHTpone ranBudn sogu Nig kinem 3 ypaxyBaHHAM BUMGF

igm

4.1. The functionality of loading point coordinates from files, comparing them with a
reference point, calculating the distance between them, and providing recommendations based on
point identifiers is presented in the following algorithm.

Loading coordinates: The function load_coordinates_from_file(filepath) reads the coordinates
of points from a file, where the first line contains the reference point, and the subsequent lines
contain the identifiers and coordinates of other points. The coordinates are stored in a dictionary
with identifiers as keys.

Analyzing points: The function analyze_points(reference_point, points) calculates the
Euclidean distances between the reference point and other points, storing the results in a dictionary.
The identifier of the point with the shortest distance to the reference point is determined.

Providing recommendations: The function get advice(identifier) provides recommendations
based on the direction encoded in the point identifier. For example, the direction "270°" indicates
the need to adjust the course to the right.

Haversine formula: The function haversine(coordl, coord2) calculates the distance between
two coordinates on the surface of a sphere (in meters), using the Earth's radius and the coordinates
of the points in radians.

Finding the best match: The function find _best match(reference_file_path,
comparison_files_directory) compares the reference point with other points from files in the
specified directory. First, the reference point is loaded from the reference file. Then, for each file in
the directory, the coordinates are loaded, and the distance between the reference points is calculated
using the Haversine formula. The file with the shortest distance to the reference point is determined,
and recommendations are provided based on the identifier of the closest point (Figure 11).

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

Best matching file: C:/Program Files/MATLAB/Lagos/Neurc_learningh5 s.txt
Distance to the closest point: 188.87553549486686 meters
Best identifier: 1&2&m 18@B°
Recommendation: 1€@m [MpopgoexyiTe pyx npAMo 13 NpHWEMALEHHAM.
Figure 11 — Implementation of the Navigator Decision Support System
(Recommendations for Ship Maneuvering)

This process allows automated finding and comparing of point coordinates, assessing their
proximity to the reference point, and obtaining directional movement recommendations.

Experiments conducted using the TRANSAS Wairtsild Navi-Sailor ECDIS navigation
simulators significantly enhanced the support of the navigator's actions. This was particularly
noticeable during training as part of the "Navigation and Piloting™ course, ECDIS module.

Overall, the developed Navigator Decision Support System, exemplified by the Lagos
location, Port Kimkan, reduced the ship's travel time by 7% to 18% when applied. Besides ensuring
navigation safety, the Navigator Decision Support System shortens the ship's route and
consequently saves fuel and lubricants as well as electricity on the ship.

Conclusion. The research focused on developing an automated Decision Support System
(DSS) for navigators, specifically targeting the enhancement of maritime safety and efficiency
under conditions of partial uncertainty in ECDIS data. The DSS developed integrates various
automated modules, each addressing a specific aspect of navigational decision-making, from OCR
processing of ECDIS images to the comparison of geolocation data and visualization of geographic
information. The following conclusions summarize the key findings and results of the research:

1. The developed DSS significantly reduces the workload on navigators by effectively
filtering and prioritizing navigational information. This reduces the risk of information overload,
which can lead to errors and critical situations. The OCR processing module automates the
extraction of textual data from ECDIS images, ensuring that only the most relevant information is
presented to the navigator.

2. By integrating geographic data visualization and comparison modules, the DSS improves
situational awareness. Navigators can better understand and interpret the navigational environment
through interactive maps with markers and routes, enhancing their ability to make informed
decisions in real-time.

3. The DSS includes advanced algorithms for analyzing ship trajectories and warning of
potential deviations from safe courses. This proactive approach to collision risk management helps
in maintaining a safe distance from other vessels and obstacles, thereby minimizing the risk of
collisions.

4. The use of artificial neural networks and data analysis techniques allows for the
optimization of ship routes. The DSS identifies potential hazards and optimizes the ship's
movement to avoid these hazards, thus improving overall navigation efficiency. Practical tests have
shown that the DSS can reduce travel time by 7% to 18%, leading to significant savings in fuel,
lubricants, and electricity.

5. The decision support module provides tailored recommendations based on the comparison
of navigational data. By identifying patterns and similarities in data, the DSS offers strategic advice
to navigators, which is crucial for effective decision-making, especially in complex and high-risk
navigational scenarios.

6. Experiments conducted using TRANSAS Wirtsild Navi-Sailor ECDIS navigation
simulators confirmed the effectiveness of the DSS in enhancing navigational safety and efficiency.
The practical application of the DSS during the "Navigation and Piloting"” course demonstrated its
capability to reduce the ship's travel time and improve overall navigation performance.

Practical significance. The research provides a robust and practical solution for enhancing
maritime safety and efficiency through the development of an automated DSS. The system's ability
to filter and prioritize information, improve situational awareness, and provide strategic
recommendations significantly enhances the navigator's decision-making capabilities. The DSS not

ISSN 2313-4763

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

only ensures safer navigation but also contributes to operational efficiency by reducing fuel
consumption and travel time.

Prospects for further research. Prospects for further research involve improving data
integration methods to enhance the accuracy and reliability of the navigator DSS. Future work will
benefit from the use of artificial neural networks to obtain intermediate assessments in the form of
approximations. Additionally, an important aspect of developing the navigator DSS is identifying
the navigator's qualification parameters to ensure logical conclusions regarding their actions and
prevent undesirable consequences. Further research is necessary both to expand and verify the
effectiveness of the DSS in real maritime navigation conditions. This will allow the improvement of
algorithms for analyzing large volumes of data and integrating artificial intelligence to provide
more adaptive and autonomous solutions.

REFERENCES

1. Ponomaryova, V., Nosov, P., Ben, A., Popovych, I., Prokopchuk, Y., Mamenko, P.,
Dudchenko, S., Appazov, E., & Sokol, I. (2024). Devising an approach for the automated
restoration of shipmaster’s navigational qualification parameters under risk conditions. Eastern-
European Journal of Enterprise Technologies, 1(3 (127), 6-26. https://doi.org/10.15587/1729-
4061.2024.296955.

2. Nosov, P., Koretsky, O., Zinchenko, S., Prokopchuk, Y., Gritsuk, I., Sokol, 1.,
Kyrychenko, K. (2023). Devising an approach to safety management of vessel control through the
identification of navigator’s state. Eastern-European Journal 1of Enterprise Technologies, 4 (3
(124)), 19-32. https://doi.org/10.15587/1729-4061.2023.286156.

3. Zinchenko, S., Kobets, V., Tovstokoryi, O., Nosov, P., & Popovych, I. (2023). Intelligent
System Control of the Vessel Executive Devices Redundant Structure. In CEUR Workshop
Proceedings (Vol. 3403, Paper 44, pp. 582-594). CEUR-WS.org.

4. Gritsuk 1. V., Nosov P. S., Ponomaryova V. P., Diahyleva O. S. (2023). Reduction of
navigation risks by using fuzzy logic to automate control processes under uncertainty. «Hayka i
texHika cboromHi» (Cepisa « Texnika»)»: kypHai. Ne 6(20). C. 8-22.

5. Victoria Ponomaryova, Pavlo Nosov. (2023). Method of automated identi-fication of
qualification parameters for marine operators under risk conditions // HaykoBuii BiCHHK
XepCcoHChKOI JepKaBHOT MOPCBHKOT akajemii (ABTOMaTH3alis Ta KOMIT IOTEPHO-IHTETPOBaHi
TEXHOJIOT11): HAyKOBUH XypHaJI. — XEepPCOH: XEPCOHChKA JiepkaBHA MOPChKa akaneMis, Ne 26-27.
C. 144-165.

6. Zhang, Mingyang & Zhang, Xinyu & Fu, Shanshan & Dai, Lei & Yu, Qing. (2024).
Recent Developments and Knowledge in Intelligent and Safe Marine Navigation. MDPI. 219 pp.
ISBN: 978-3-03928-624-9.

7. Banaszek, Andrzej & Lisaj, Andrzej. (2023). The Radiocommunication Support Decision
System to Use in Distress Situations for Captains of Small Non-conventional Vessels Operating in
the Caribbean Sea Area. Procedia Computer Science. 225. 765-774.
https://doi.org/10.1016/j.procs.2023.10.063.

8. Luo, Jianan & Geng, Xiongfei & Li, Yabin & Yu, Qiaochan. (2022). Study on the Risk
Model of the Intelligent Ship Navigation. Wireless Communications and Mobile Computing. 1-9.
https://doi.org/10.1155/2022/3437255.

9. Wang, Zhiyuan & Wu, Yong & Chu, Xiumin & Liu, Chenguang & Zheng, Mao. (2023).
Risk Identification Method for Ship Navigation in the Complex Waterways via Consideration of
Ship Domain. Journal of Marine Science and Engineering. 11. 2265.
https://doi.org/10.3390/jmse11122265.

10. Qian, Jingyi & Zeng, Huilu & Yao, Guowei & Kong, Fanwei. (2023). Research of the
New Generation Marine Navigation Security Communication System. Transactions on Computer
Science and Intelligent Systems Research. 2. 130-139. https://doi.org/10.62051/vvvtyel5.

11. Sarkodie, Pokuaa & Zhang, Zhenkai & Benuwa, Ben & Ghansah, Benjamin & Ansah,
Ernest. (2018). A Survey of Advanced Marine Communication and Navigation Technologies:

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

https://doi.org/10.15587/1729-4061.2024.296955
https://doi.org/10.15587/1729-4061.2024.296955
https://doi.org/10.15587/1729-4061.2023.286156
https://doi.org/10.1016/j.procs.2023.10.063
https://doi.org/10.1155/2022/3437255
https://doi.org/10.3390/jmse11122265
https://doi.org/10.62051/vvvtye15

HaykoBu# BicHUK X€pCOHCBKOI fepKaBHOI MOpPChKOi akaaeMii NRWP1I P P4

Developments and Strategies. International Journal of Engineering Research in Africa. 34. 102—
115. https://doi.org/10.4028/www.scientific.net/JERA.34.102.

12. Yang, Defu & Solihin, Mahmud Iwan & Zhao, Yawen & Yao, Benchun & Chen,
Chaoran & Cai, Bingyu & Machmudah, Affiani. (2023). A review of intelligent ship marine object
detection based on RGB camera. IET Image Processing. 18. n/a-n/a.
https://doi.org/10.1049/ipr2.12959.

13. Jian, Jun & Sun, Zheng & Sun, Kai. (2024). An Intelligent Automatic Sea Forecasting
System Targeting Specific Areas on Sailing Routes. Sustainability. 16. 1117.
https://doi.org/10.3390/su16031117.

14. Wang, Yong & Gao, Zengyun & Li, Chunxu & Ge, Fan & Wei, Changgeng & Xu,
Jiaging. (2022). Research on Maritime Navigation Perception Requirements of Intelligent Ships.
Journal of Physics: Conference Series. 2356. 012033. https://doi.org/10.1088/1742-
6596/2356/1/012033.

15. Zhang, Daiyong & Chu, Xiumin & Liu, Chenguang & He, Zhibo & Zhang, Pulin & Wu,
Wenxiang. (2024). A Review on Motion Prediction for Intelligent Ship Navigation. Journal of
Marine Science and Engineering. 12. 107. https://doi.org/10.3390/jmse12010107.

16. Cui, Zhewen & Guan, Wei & Zhang, Xianku & Zhang, Cheng. (2023). Autonomous
Navigation Decision-Making Method for a Smart Marine Surface Vessel Based on an Improved
Soft Actor—Critic Algorithm. Journal of Marine Science and Engineering. 11. 1554,
https://doi.org/10.3390/jmse11081554.

17. Liu, Qixin & Bai, Xu & Luo, Xiaofang & Yang, Li & Li, Yongzheng & Wang, Ke.
(2023). Dynamic Risk Analysis of Intelligent Navigation Process Based on Dynamic Bayesian
Network. Journal of Physics: Conference Series. 2491. 012011. https://doi.org/10.1088/1742-
6596/2491/1/012011.

18. Du, Yanke & Sun, Shuo & Qiu, Shi & Li, Shaoxi & Pan, Mingyang & Chen, Chi-Hua.
(2021). Intelligent Recognition System Based on Contour Accentuation for Navigation Marks.
Wireless Communications and Mobile Computing. https://doi.org/10.1155/2021/6631074.

19. Serhii, Firsov & Pishchukhina, Olga. (2018). Intelligent support of multilevel functional
stability of control and navigation systems. Radio Electronics, Computer Science, Control.
https://doi.org/10.15588/1607-3274-2018-2-20.

20. Zhen, Rong & Ye, Yingdong & Chen, Xingiang & Xu, Liangkun. (2023). A Novel
Intelligent Detection Algorithm of Aids to Navigation Based on Improved YOLOvA4. Journal of
Marine Science and Engineering. 11. 452. https://doi.org/10.3390/jmse11020452.

21. Luo, Jianping. (2024). Intelligent Stowage Expert Decision-Making System for Ro-Ro
Passenger ~ Ships. Electronics, = Communications and Networks. https://doi.org/10.
3233/FAIA231186.

22. Xue, Xingqun & Ma, Xiaochen & Jiang, Mingnan & Gao, Yang & Park, Sae. (2020).
The Construction of an Intelligent Risk-Prevention System for Marine Silk Road. Applied Sciences.
10. 5044. https://doi.org/10.3390/app10155044.

23. Bingchan, Li & Mao, Bo & Cao, Jie. (2018). Maintenance and Management of Marine
Communication and Navigation Equipment Based on Virtual Reality. Procedia Computer Science.
139. 221-226. https://doi.org/10.1016/j.procs.2018.10.254.

MonomapwoBa Bikropin METOJ] IIJATPUMKM TPUHUHATTS PILEHL CYJHOBOJIIA 1A
ABTOMATH30BAHOI'O KEPYBAHHS BE3IIEKOIO PYXY CYIHA I10 JAHUM ECDIS

Mema odocnidacennss — niosuwjenns Oe3nexu MoOpeniascmed WIsAXoM pPo3pooOKu ma 3aCmocy8anHs Memooy
inmezpayii asmomamuzosanux 3aco6ie niompumku npuinamms piwens (CIHIIP) cyonoeodis ¢ ymosax
HegusHayenocmi. OCHOBHOW0 NPOOAEMOIO € BUCOKE HABAHMANCEHHS HA CYOHOB800Ii8 uepe3 30iiblieHHs 00caey
iHGhopmayii 6i0 HaAGI2AYITIHUX CUCMEM, WO MOXCE NPU3BOOUMU 00 NOMULOK MA ABAPITIHUX CUMYAYIL.

Ocnogna npobnema 00CHiONCeHHs. NOJA2AE Y HeOOXIOHOCI CMBOPEHHs. AGMOMAMU308AHOI cucmemu, sKa
30amHa epexmusno Qirempysamu geruxutl 0b6cse iHopmayil ma Hadasamu CYyOHO800I0 JuuLe
HAUax}CAUSIWi Oani O NPULHAMMS PIULeHb, MIHIMI3VIOUU PUBUK NOMUIIOK) CKIAOHUX HABI2AYIUHUX YMOBAX.
Memoouka Oocnioxcennsi nepeobauae cmeopenns CIIIIP cyonoeodis na ocnosi eéenukux oanux ECDIS ma
ananimuxu 0ns i0eHmu@ikayii cyoen i ananizy pusuKie 3imKHeHb, SUKOPUCIOBYIOUU MEMOOU PO3NIZHABAHHSL

ISSN 2313-4763

https://doi.org/10.4028/www.scientific.net/JERA.34.102
https://doi.org/10.1049/ipr2.12959
https://doi.org/10.3390/su16031117
https://doi.org/10.1088/1742-6596/2356/1/012033
https://doi.org/10.1088/1742-6596/2356/1/012033
https://doi.org/10.3390/jmse12010107
https://doi.org/10.3390/jmse11081554
https://doi.org/10.1088/1742-6596/2491/1/012011
https://doi.org/10.1088/1742-6596/2491/1/012011
https://doi.org/10.1155/2021/6631074
https://doi.org/10.15588/1607-3274-2018-2-20
https://doi.org/10.3390/jmse11020452
https://doi.org/10.%203233/FAIA231186
https://doi.org/10.%203233/FAIA231186
https://doi.org/10.3390/app10155044
https://doi.org/10.1016/j.procs.2018.10.254

N NPl PL] ABTOMaTH3allis Ta KOMII'IOTEPHO-IHTErPOBaHiI TEXHOAOTII

Hagieayinoi inghopmayii ons onmumizayii mapupymie. JJocriodxcenHs nposoouiocs HA Mapuipymi 3axo0y y
nopm Jlacoc, Tumkan, 0e pazom 3 excnepmom, OYi0 CKIA0EHO CIOGHUK OIll HA KOJMCHOMY emani Mapuwipymy,
6i0n06ioHo 00 danux ECDIS.

Pesynomamu odocnioocenns demoncmpyioms, ujo 3acmocysanus pospoonenoi CIIIIP 0o3eonsc 3menwumu
HABAHMAICEHHS. HA CYOHOB00II8, NOKpAWUMU CUMYAYIUHY 0OI3HAHICMb Ma MIHIMI3Y8amu pUu3uKU 3iMKHEHb.
3okpema, nio uac mpenasicepnoi niocomosku 3a Kypcom «Hasicayis i noyisy 3 UKOPUCMAHHAM HABICAYIIHUX
mpenaxcepie TRANSAS Wirtsild Navi-Sailor ECDIS, uac pyxy cyona 6yno ckopouero 6i0 7% 0o 18%, wo
MAKOINC CAPUSLIIO eKOHOMIL NATUBHO-MACTHUILHUX MAMepPIanie ma eieKkmpoenepeii Ha CyoHi.

Ipaxmuuna 3uauywicme Odocnioxcenna noaseac 8 pospooyi CIIIIP, ska 3abesneuye ¢hinompayiro ma
npiopume3sayito inpopmayii, nokpawyrouu ob6isHanicme npo Hasieayiuny cumyayiro. Cucmema euKxopucmosye
Memoou ioenmugpixayii pieHs nebesneku ma Hadae 32eHePoOsani A8MOMAMU4HI NOpaou.

Tlepcnexmusu noodanviuux O00CAIOINCEHb BKIIOYAIOMb B0OCKOHANEHHI Memoodie [Hmezpayii pi3Hux CeHcopis,
niOBUWEeHHsT MOYHOCMI MA HAOMIHOCMI HABI2AYIUHUX CUCEM, A MAaKodc 3a0e3nedenHst Kibepbesnexu.
Poswupenns oocnioxcenns cnpusmumymo Oinowr 2aubO0Kil nepesipyi e@ekmusHoCmi 3anponoHO8aH020
MEmMOoOy Y peanbHUxX yMO8ax MOpPCbKoi Hagieayii ma 600CKOHALEHHAM AA20PUMMIE AHANIZY 6EIUKUX 00CA2I6
OaHux.

bion. 23, puc. 11.

Kniwouosi cnosa: ECDIS; asmomamusayis; pusux, HeBU3HAYEHICMb, A8MOMAMU308AH] CUCTEMU YNPAGIIHHA,
iHmeneKkmyanvbHi cucmemu, JHOOCbKUU ¢hakmop, 6Oe3neka Mopeniascmed, KeanigikayitiHi napamempu,
ioenmudghixayis.

© Ponomaryova Victoria

CratTio puiiHsATO A0 penaximii 26.05.2024

Jlo pyopuku eKkni0ueno cmammi 3a MeMamuyHo0 CRPAMOGAHICMI0 «Aemomamu3ayia ma KoOMn’10mepHo-
iHmezpoeani mexnonoziin

